News Release

Pre-surgical exposure to blue light reduces organ damage in mice

'Striking' results suggest a potential pre-surgical treatment could improve outcomes in patients

Peer-Reviewed Publication

University of Pittsburgh Schools of the Health Sciences

PITTSBURGH, April 25, 2016 - A 24-hour exposure to bright blue light before surgery reduces inflammation and organ damage at the cellular level in a mouse model, according to new research from the University of Pittsburgh School of Medicine.

The finding, reported in today's issue of the Proceedings of the National Academy of Sciences, suggests a potential pre-treatment light therapy that could improve outcomes in patients undergoing procedures characterized by a period of blood restriction, such as liver resection or organ transplantation. The research was funded by the National Institutes of Health (NIH).

"We were incredibly surprised by our results," said senior author Matthew R. Rosengart, M.D., M.P.H., associate professor in the Pitt School of Medicine's departments of Surgery and Critical Care Medicine. "There's long been evidence suggesting that light and circadian rhythms profoundly influence our biology, and specifically the physiological response to stress. So while we were expecting to find some correlation with light spectrum and the immune response, we were not expecting results quite so striking,"

Light is complex and consists of intensity, duration of exposure and wavelength. This study is one of the first that accounts for this complexity and derives results that could guide future clinical trials in humans.

Dr. Rosengart and his team compared what happened when mice were exposed to red light, ambient white fluorescent light similar to that in hospitals and high-intensity blue light 24 hours before kidney or liver surgery involving periods of blood restriction and restoration.

The high-intensity blue light outperformed the red and white light, attenuating cellular and organ injury through at least two cellular mechanisms. The blue light brought about a reduction in the influx of neutrophils, a type of white blood cell involved in inflammation, which can lead to organ damage and other problems. Additionally, blue light inhibited dying cells from releasing a protein called HMGB1 that triggers organ-damaging inflammation.

The team then tested whether the blue light was acting through the optic pathway or some other mechanism, like the skin. Blind mice had the same healing response regardless of whether they were exposed to blue or red light, indicating that the protective impact of blue light does, indeed, act through the optic pathway.

The team then looked at whether one color of light might disrupt the circadian rhythm, which is linked to immunity, more than another. Blood from mice exposed to red, white and blue light had similar concentrations of melatonin and corticosteroid hormones. Furthermore, the mice under each of the lights also had similar activity levels. These data indicate that the effects of blue light were not mediated by a disruption of sleep, activity or circadian rhythms.

Finally, Dr. Rosengart stresses that mice are nocturnal animals with visual, circadian and immune biology that is distinct from humans. Thus, the results of his study should not be broadly extended to patients or hospital settings until robust clinical trials have been performed to show whether or not pretreatment with intensive blue light is safe.

###

Additional researchers on this project are Du Yuan, M.D., of Pitt and Central South University in Hunan, China; Richard D. Collage, Hai Huang, M.D., Xianghong Zhang, Ph.D., Ben C. Kautza, M.D., Anthony J. Lewis, M.D., Brian S. Zuckerbraun, M.D., Allan Tsung, M.D., and Derek C. Angus, M.D., M.P.H., all of Pitt's School of Medicine.

This research was funded by NIH grant R01 GM082852.

About the University of Pittsburgh School of Medicine

As one of the nation's leading academic centers for biomedical research, the University of Pittsburgh School of Medicine integrates advanced technology with basic science across a broad range of disciplines in a continuous quest to harness the power of new knowledge and improve the human condition. Driven mainly by the School of Medicine and its affiliates, Pitt has ranked among the top 10 recipients of funding from the National Institutes of Health since 1998. In rankings recently released by the National Science Foundation, Pitt ranked fifth among all American universities in total federal science and engineering research and development support.

Likewise, the School of Medicine is equally committed to advancing the quality and strength of its medical and graduate education programs, for which it is recognized as an innovative leader, and to training highly skilled, compassionate clinicians and creative scientists well-equipped to engage in world-class research. The School of Medicine is the academic partner of UPMC, which has collaborated with the University to raise the standard of medical excellence in Pittsburgh and to position health care as a driving force behind the region's economy. For more information about the School of Medicine, see http://www.medschool.pitt.edu.

http://www.upmc.com/media


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.