News Release

Rice University-led team morphs nanotubes into tougher carbon for spacecraft, satellites

Peer-Reviewed Publication

Rice University

Transmission Electron Microscope Image, Nanodiamonds

image: Transmission electron microscope images show nanodiamonds in samples of nanotubes fired at a target at high velocity. The insert shows the diffraction pattern identifying the formations as nanodiamonds. view more 

Credit: Ajayan Group/Rice University

Superman can famously make a diamond by crushing a chunk of coal in his hand, but Rice University scientists are employing a different tactic.

Rice materials scientists are making nanodiamonds and other forms of carbon by smashing nanotubes against a target at high speeds. Nanodiamonds won't make anyone rich, but the process of making them will enrich the knowledge of engineers who design structures that resist damage from high-speed impacts.

The diamonds are the result of a detailed study on the ballistic fracturing of carbon nanotubes at different velocities. The results showed that such high-energy impacts caused atomic bonds in the nanotubes to break and sometimes recombine into different structures.

The work led by the labs of materials scientists Pulickel Ajayan at Rice and Douglas Galvao at the State University of Campinas, Brazil, is intended to help aerospace engineers design ultralight materials for spacecraft and satellites that can withstand impacts from high-velocity projectiles like micrometeorites.

The research appears in the American Chemical Society journal ACS Applied Materials and Interfaces.

Knowing how the atomic bonds of nanotubes can be recombined will give scientists clues to develop lightweight materials by rearranging those bonds, said co-lead author and Rice graduate student Sehmus Ozden.

"Satellites and spacecraft are at risk of various destructive projectiles, such as micrometeorites and orbital debris," Ozden said. "To avoid this kind of destructive damage, we need lightweight, flexible materials with extraordinary mechanical properties. Carbon nanotubes can offer a real solution."

The researchers packed multiwalled carbon nanotubes into spherical pellets and fired them at an aluminum target in a two-stage light-gas gun at Rice, and then analyzed the results from impacts at three different speeds.

At what the researchers considered a low velocity of 3.9 kilometers per second, a large number of nanotubes were found to remain intact. Some even survived higher velocity impacts of 5.2 kilometers per second. But very few were found among samples smashed at a hypervelocity of 6.9 kilometers per second. The researchers found that many, if not all, of the nanotubes split into nanoribbons, confirming earlier experiments.

Co-author Chandra Sekhar Tiwary, a Rice postdoctoral researcher, noted the few nanotubes and nanoribbons that survived the impact were often welded together, as observed in transmission electron microscope images.

"In our previous report, we showed that carbon nanotubes form graphene nanoribbons at hypervelocity impact," Tiwary said. "We were expecting to get welded carbon nanostructures, but we were surprised to observe nanodiamond as well." The orientation of nanotubes both to each other and in relation to the target and the number of tube walls were as important to the final structures as the velocity, Ajayan said.

"The current work opens a new way to make nanosize materials using high-velocity impact," said co-lead author Leonardo Machado of the Brazil team.

###

Machado is a graduate student at the State University of Campinas, Brazil, and the Federal University of Rio Grande do Norte, Brazil. Co-authors are Rice's Robert Vajtai, an associate research professor, and Enrique Barrera, a professor of materials science and nanoengineering, and Pedro Alves da Silva of the State University of Campinas and the Federal University of ABC, Santo Andre, Brazil. Ajayan is chair of Rice's Department of Materials Science and NanoEngineering, the Benjamin M. and Mary Greenwood Anderson Professor in Engineering and a professor of chemistry.

The research was supported by the Department of Defense, the U.S. Air Force Office of Scientific Research and its Multidisciplinary University Research Initiative, NASA's Johnson Space Center, the Sao Paulo Research Foundation, the Center for Computational Engineering and Sciences at Unicamp, Brazil, and the Brazilian Federal Agency for Support and Evaluation of Graduate Education.

Read the abstract at http://pubs.acs.org/doi/abs/10.1021/acsami.6b07547

This news release can be found online at http://news.rice.edu/2016/09/06/nanodiamonds-in-an-instant/

Follow Rice News and Media Relations via Twitter @RiceUNews

Videos:

https://youtu.be/aOYHWaD27xE

A simulation shows how nanotubes deform when shot at a solid target at 5.2 kilometers per second. Experiments and calculations by researchers at Rice University and in Brazil showed the formation of nanodiamonds and other carbon structures. (Credit: Galvao Group/State University of Campinas)

https://youtu.be/9H3DOmIzoCI

A computer simulation shows the interaction between two nanotubes shot at a target at hypervelocity. Remnants of the nanotubes form diamond-like amorphous carbon and grain boundaries. (Credit: Galvao Group/State University of Campinas)

Related materials:

Ajayan Research Group: http://ajayan.rice.edu

Rice Department of Materials Science and NanoEngineering: https://msne.rice.edu

Located on a 300-acre forested campus in Houston, Rice University is consistently ranked among the nation's top 20 universities by U.S. News & World Report. Rice has highly respected schools of Architecture, Business, Continuing Studies, Engineering, Humanities, Music, Natural Sciences and Social Sciences and is home to the Baker Institute for Public Policy. With 3,910 undergraduates and 2,809 graduate students, Rice's undergraduate student-to-faculty ratio is 6-to-1. Its residential college system builds close-knit communities and lifelong friendships, just one reason why Rice is ranked No. 1 for best quality of life and for lots of race/class interaction by the Princeton Review. Rice is also rated as a best value among private universities by Kiplinger's Personal Finance. To read "What they're saying about Rice," go to http://tinyurl.com/RiceUniversityoverview.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.