News Release

Researchers at Albert Einstein College of Medicine receive $2.6 million NIH grant to develop targeted cancer immunotherapies

Grant and Award Announcement

Albert Einstein College of Medicine

October 19, 2016--(BRONX, NY)--The National Institutes of Health has awarded two co-investigators at Albert Einstein College of Medicine a five-year, $2.6 million grant to make immunotherapy agents that more precisely and effectively treat a variety of cancers while causing far fewer side effects than current immunotherapies.

The two investigators are Steven C. Almo, Ph.D., professor and chair of biochemistry, professor of physiology & biophysics and Wollowick Family Foundation Chair in Multiple Sclerosis and Immunology at Einstein; and Chandan Guha, M.B.B.S., Ph.D., professor in the departments of radiation oncology, of pathology and of urology at Einstein and vice chair of radiation oncology at Einstein and Montefiore Einstein Center for Cancer Care.

Immunotherapy has emerged as a highly promising strategy against cancer. It involves manipulating T cells, a type of white blood cell that helps destroy invaders such as viruses and bacteria and that can potentially eliminate cancer cells as well. But existing immunotherapies have significant drawbacks. They focus on a small number of therapeutic targets and work against only a few types of cancer; and because they stimulate or inhibit all T cells, rather than a select few, current immunotherapies often cause harmful side effects that can be fatal.

The Einstein researchers have developed a novel immunotherapy strategy for directing T cells to attack specific types of cancer while also modulating their behavior: The researchers can rev up T-cell activity to attack cancer cells or suppress their activity in situations where immunotherapy is aimed at treating autoimmune diseases. The strategy involves modulating T cells with a single "fusion protein" containing two parts: (1) a protein that acts like a "zip code" to specifically target only those T cells relevant to a particular type of cancer or disease; and (2) a molecule tailored to either activate or inhibit the precisely targeted T cells by stimulating particular receptors on their surfaces.

The researchers refer to their synthetic protein as a synTac, for "artificial immunological synapse for T-cell activation."

The Einstein researchers have already developed a number of different synTacs that have worked both in cells and in mice. The NIH grant will allow them to develop additional synTac fusion proteins and to evaluate their efficacy in mouse models of melanoma and pancreatic cancer. They expect that their synTacs will trigger an increase in the number of melanoma-specific and pancreatic-specific T cells, causing tumors in both mouse models to regress significantly. The long-term goal is to create new and more effective immunotherapies and ultimately translate these strategies to the clinic.

###

The grant is titled "Novel Strategies for Precision T-cell Therapies" (1R01CA198095). Albert Einstein College of Medicine has licensed intellectual property covering the synTac technology to Cue Biopharma for further development and commercialization.

About Albert Einstein College of Medicine

Albert Einstein College of Medicine is one of the nation’s premier centers for research, medical education and clinical investigation. During the 2015-2016 academic year, Einstein is home to 731 M.D. students, 193 Ph.D. students, 106 students in the combined M.D./Ph.D. program, and 278 postdoctoral research fellows. The College of Medicine has more than 1,900 full-time faculty members located on the main campus and at its clinical affiliates. In 2015, Einstein received $148 million in awards from the National Institutes of Health (NIH). This includes the funding of major research centers at Einstein in aging, intellectual development disorders, diabetes, cancer, clinical and translational research, liver disease, and AIDS. Other areas where the College of Medicine is concentrating its efforts include developmental brain research, neuroscience, cardiac disease, and initiatives to reduce and eliminate ethnic and racial health disparities. Its partnership with Montefiore Medical Center, the University Hospital and academic medical center for Einstein, advances clinical and translational research to accelerate the pace at which new discoveries become the treatments and therapies that benefit patients. Through its extensive affiliation network involving Montefiore, Jacobi Medical Center—Einstein’s founding hospital, and three other hospital systems in the Bronx, Brooklyn and on Long Island, Einstein runs one of the largest residency and fellowship training programs in the medical and dental professions in the United States. For more information, please visit www.einstein.yu.edu, read our blog, follow us on Twitter, like us on Facebook, and view us on YouTube.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.