Public Release: 

How cells die by ferroptosis

Helmholtz Zentrum München - German Research Center for Environmental Health

IMAGE

IMAGE: A fibroblast undergoing ferroptosis. view more

Credit: Source: Helmholtz Zentrum München

Ferroptosis is a recently discovered form of cell death, which is still only partially understood. Scientists at the Helmholtz Zentrum München have now identified an enzyme that plays a key role in generating the signal that initiates cell death. Their findings, published in two articles in the journal Nature Chemical Biology, could now give new impetus to research into the fields of cancer, neurodegeneration and other degenerative diseases.

The term ferroptosis was first coined in 2012. It is derived from the Greek word ptosis, meaning "a fall", and ferrum, the Latin word for iron, and describes a form of regulated necrotic cell death in which iron appears to play an important role. "The individual mechanisms involved in this type of cell death remain only partly understood, and our findings make an important contribution towards a better understanding of ferroptotic cell death," says study leader Dr. Marcus Conrad, who is heading a research group at the Institute of Developmental Genetics at the Helmholtz Zentrum München.

Along with his team and colleagues from the University of Pittsburgh, he was able to show that ACSL4*, an enzyme involved in the metabolism of fatty acids, plays a central role in ferroptosis. In order for the lethal mechanism to be triggered, a certain amount of specific oxidized lipid molecules must be present in membranes. "Acsl4 is critically involved in shaping the cellular lipid composition by storing more poly-unsaturated long-chain fatty acids in cellular membranes, thereby providing the starting materials for the generation of the lethal lipid signals driving ferroptosis" explains PhD student Sebastian Doll, first author of one of the two studies. "Previously it was assumed that iron-dependent lipid oxidation occurs randomly; however, our data now demonstrate that ACSL4 centrally contributes to the formation of oxidized lipid death signals in ferroptosis."

Potential applications for the treatment of cancer and neurodegenerative diseases

Although the term 'cell death' is generally viewed as an adverse event and thus has a rather negative image, it has been shown - particularly in the context of cancer - that the selective destruction of aberrant cells is vital for the human body. The scientists therefore examined the role of ACSL4 in this context. They showed that a subset of breast cancer cells (i.e. triple negative breast cancer cells) that do not produce ACSL4 are extremely resistant to ferroptosis, while those that express the enzyme respond very sensitively to ferroptosis induction. "This is a highly interesting finding given the fact that the presence of ACSL4 determines whether or not cells can embark on the ferroptosis pathway" explains Dr. José Pedro Friedmann Angeli, who was centrally involved in both studies. It is thus well conceivable, he says, that the molecule could be used as a biomarker in cancer patient stratification.

The researchers also provided the first molecular approach for targeting ACSL4 in the signalling pathway. In a model experiment using thiazolidinediones, a class of active compounds commonly used in the treatment of diabetes, they succeeded in slowing down the process of ferroptosis.

"Our intriguing insights that the ACSL4 enzyme plays a substantial role in the process of cell death provide novel cues for yet-unrecognized therapeutic approaches towards inhibiting ferroptosis in degenerative diseases or inducing ferroptosis in certain tumor diseases," says study leader Dr. Conrad. In particular, tumors that are otherwise very difficult to treat with standard chemotherapy might be amenable for ferroptosis therapy, the researchers say.

###

Further information

* Acyl-CoA is a group of coenzymes involved in the metabolism of fatty acids. ACSL4 stands for Acyl-CoA synthetase long-chain family member 4.

Background: Up until now ferroptosis is only partially understood. However, the importance of cellular suicide has already been impressively documented by research concerning apoptosis, the first identified cell death pathway, which has been explored by far more comprehensively throughout the last decades than ferroptosis. Moreover, ferroptosis appears to play a key role in cancer and in cell demise in response to oxidative stress (e.g. in neurons). Previously, only a few essential molecules, such as glutathione peroxidase 4 (GPX4), have been implicated in the ferroptotic process.

Original publications:

Doll, S. et al. (2016): Acsl4 Dictates Ferroptosis Sensitivity by Shaping Cellular Lipid Composition. Nature Chemical Biology, doi: 10.1038/nchembio.2239 http://www.nature.com/nchembio/journal/vaop/ncurrent/full/nchembio.2239.html

Kagan, VE. et al. (2016): Oxidized Arachidonic and Adrenic PEs Navigate Cells to Ferroptosis. Nature Chemical Biology, doi: 10.1038/nchembio.2238 http://www.nature.com/nchembio/journal/vaop/ncurrent/full/nchembio.2238.html

The Helmholtz Zentrum München, the German Research Center for Environmental Health, pursues the goal of developing personalized medical approaches for the prevention and therapy of major common diseases such as diabetes and lung diseases. To achieve this, it investigates the interaction of genetics, environmental factors and lifestyle. The Helmholtz Zentrum München is headquartered in Neuherberg in the north of Munich and has about 2,300 staff members. It is a member of the Helmholtz Association, a community of 18 scientific-technical and medical-biological research centers with a total of about 37,000 staff members. http://www.helmholtz-muenchen.de/en

Rising life expectancy is causing an increase in age-related, but also sociological and environmental, influences on the genes. The Institute of Developmental Genetics (IDG) examines these changes in genetic material. In the Mouse Genetics group, genetic animal models are developed to investigate various diseases. These models are analyzed in the Disease Modelling research group in order to identify gene functions and cell processes and evaluate the influence of the environment and aging processes. The group focuses on the examination of neurological and psychiatric diseases. http://www.helmholtz-muenchen.de/idg

The Institute of Human Genetics (IHG) at the Helmholtz Zentrum München and the Technical University of Munich: The Institute is concerned with identifying genes associated with disease and characterizing their functions. The main aim of the research projects is to develop disease-related genetic variation in humans and mice as well as to develop chromosome analysis techniques and new methods for dealing with specific issues in the sphere of pre- and post-natal diagnostics and tumor cytogenetics. http://www.helmholtz-muenchen.de/ihg

The research objective of the Institute of Experimental Genetics (IEG) is to elucidate the causes and pathogenesis of human diseases. Due to its prominent role in interdisciplinary and international consortia, the IEG is a global leader in the systemic study of mouse models for human diseases and the elucidation of involved genes. The main focus is on metabolic diseases such as diabetes. The IEG is part of the Helmholtz Diabetes Center (HDC). http://www.helmholtz-muenchen.de/ieg

The Institute of Pathology (PATH) contributes to the identification and characterization of molecular mechanisms and pathways, which are relevant for disease development and progression. We endeavor to understand the interplay between environment and genetic, and to identify novel targets for therapeutic intervention. http://www.helmholtz-muenchen.de/path

Contact for the media: Department of Communication, Helmholtz Zentrum München - German Research Center for Environmental Health, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 2238 - Fax: +49 89 3187 3324 - E-mail: presse@helmholtz-muenchen.de

Scientific Contact at Helmholtz Zentrum München: Dr. Marcus Conrad, Helmholtz Zentrum München - German Research Center for Environmental Health, Institute of Developmental Genetics, Ingolstädter Landstr. 1, 85764 Neuherberg - Tel. +49 89 3187 4608, E-mail: marcus.conrad@helmholtz-muenchen.de

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.