News Release

Scientists aim to create the world's largest sickle cell disease stem cell library

Peer-Reviewed Publication

Boston University School of Medicine

Center for Regenerative Medicine at Boston Medical Center and Boston University School of Medicine

image: Boston Medical Center & Boston University School of Medicine Center for Regenerative Medicine researchers: (L-R): Gustavo Mostoslavsky, M.D., Ph.D., Martin Steinberg, M.D., George Murphy, Ph.D. view more 

Credit: Boston Medical Center

BOSTON--Scientists at the Center for Regenerative Medicine (CReM) at Boston Medical Center (BMC) and Boston University School of Medicine (BUSM) are creating an induced pluripotent stem cell (iPSC)-based research library that opens the door to invaluable sickle cell disease research and novel therapy development.

The library comprises blood samples from ethnically diverse patients with sickle cell disease from around the world and represents the major genetic backgrounds on which the sickle cell mutation occurred. The library is outlined in the current online issue of the journal Stem Cell Reports.

iPSCs are cells that can renew indefinitely as undifferentiated cells and later can be directed to grow into any type of tissue or organ. These stem cell lines can then be used to create disease models in a lab, which allows researchers to better understand how the disease occurs and develop and test new, effective treatments against the disease.

"Sickle cell disease affects millions of people worldwide and is an emerging global health burden," said George Murphy, PhD, co-founder of the CReM and assistant professor of medicine in the division of hematology-oncology at BUSM who is leading the project. "iPSCs have the potential to revolutionize the way we study human development, model life-threatening diseases, and eventually treat patients."

Sickle cell disease (SCD) is an inherited red blood cell disorder that causes abnormal hemoglobin in blood. Hemoglobin is a red blood cell protein that carries oxygen throughout the body. Red blood cells that contain normal hemoglobin are disc shaped and can easily move through the blood vessels. Sickle-shaped cells are not flexible and can stick to vessel walls, causing a blockade that can slow or stop blood from flowing properly. The lack of tissue oxygen can cause severe, chronic pain and organ damage.

"In addition to the library, we've designed and are using gene editing tools to correct the sickle hemoglobin mutation using the stem cell lines," said Gustavo Mostoslavsky, MD, PhD, co-founder of the CReM and associate professor of medicine and microbiology at BUSM who is co-leading the project with Murphy. "When coupled with corrected sickle cell disease specific iPSCs, these tools could one day provide a functional cure for the disorder."

SCD is a lifelong illness. According to the World Health Organization (WHO), approximately 5 percent of the world's population carries trait genes for SCD, which disproportionately affects African Americans and Hispanics. In the United States, approximately 100,000 people are affected by SCD. The Center of Excellence in Sickle Cell Disease at BMC is the largest center in all of New England to provide care for SCD patients across their lifespan--treating approximately 450 adults and pediatric patients annually.

"CReM researchers investigate diseases that are more prevalent in BMC patients, including sickle cell disease, to make strides in treating diseases that disproportionally affect vulnerable populations," said Martin Steinberg, MD, professor of medicine at BUSM and co-author of the paper. "With their philosophy and guiding principles, the results that they share could help speed up the process of finding novel treatments and potentially cures for diseases affecting people across the world."

The library is part of a larger NextGen Consortium study funded by the National Institutes of Health (U01HL107443). In keeping with the CReM's philosophy of 'open source biology' and the sharing of cells, reagents and know-how with the research community, these stem cell lines are available to researchers worldwide.

###

About Boston Medical Center

Boston Medical Center is a private, not-for-profit, 496-bed, academic medical center that is the primary teaching affiliate of Boston University School of Medicine. It is the largest and busiest provider of trauma and emergency services in New England. Committed to providing high-quality health care to all, the hospital offers a full spectrum of pediatric and adult care services including primary and family medicine and advanced specialty care with an emphasis on community-based care. Boston Medical Center offers specialized care for complex health problems and is a leading research institution, receiving more than $119 million in sponsored research funding in fiscal year 2015. It is the 11th largest recipient of funding in the U.S. from the National Institutes of Health among independent hospitals. In 1997, BMC founded Boston Medical Center Health Plan, Inc., now one of the top ranked Medicaid MCOs in the country, as a non-profit managed care organization. It does business in Massachusetts as BMC HealthNet Plan and as Well Sense Health Plan in New Hampshire, serving more than 315,000 people, collectively. Boston Medical Center and Boston University School of Medicine are partners in the Boston HealthNet - 14 community health centers focused on providing exceptional health care to residents of Boston. For more information, please visit http://www.bmc.org.

About Boston University School of Medicine

Originally established in 1848 as the New England Female Medical College, and incorporated into Boston University in 1873, Boston University School of Medicine (BUSM) today is a leading academic medical center with an enrollment of more than 700 medical students and 950 students pursuing degrees in graduate medical sciences. BUSM faculty contribute to more than 668 active grants and contracts, with total anticipated awards valued at more than $693 million in amyloidosis, arthritis, cardiovascular disease, cancer, infectious diseases, pulmonary disease and dermatology, among other areas. The School's teaching affiliates include Boston Medical Center, its primary teaching hospital, the Boston VA Healthcare System, Kaiser Permanente in northern California, as well as Boston HealthNet, a network of 15 community health centers. For more information, please visit http://www.bumc.bu.edu/busm/


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.