News Release

3-D-printed implants can improve integration of amputee prosthetic devices with bone

Peer-Reviewed Publication

Mary Ann Liebert, Inc./Genetic Engineering News

3D Printing and Additive Manufacturing

image: 3D Printing and Additive Manufacturing is the only peer-reviewed journal focused on the rapidly moving field of 3D printing and related technologies. view more 

Credit: Mary Ann Liebert, Inc., publishers

New Rochelle, NY, June 29, 2017--A new study evaluated two additive manufacturing methods for producing either fine or coarse textured titanium implants and compared the strength of bone integration, interlocking, and torque in rats given one or both types of the implants in the distal femurs. The ability to apply this technology to customize implant surface textures and geometries to match the specific anatomy of human amputees is increasingly important as the trend in prosthetic devices moves toward transcutaneous osseointegrated implants rather than socket-cup fitting devices, according to an article published in 3D Printing and Additive Manufacturing, a peer-reviewed journal from Mary Ann Liebert, Inc., publishers. The article is available free on the 3D Printing and Additive Manufacturing website until July 20, 2017.

The article entitled "Osseointegration of Coarse and Fine Textured Implants Manufactured by Electron Beam Melting and Direct Metal Laser Sintering" is coauthored by David Ruppert, Ola Harrysson, PhD, Denis Marcellin-Little, DEDV, Sam Abumoussa, Laurence Dahners, MD, and Paul Weinhold, PhD, University of North Carolina (UNC), UNC School of Medicine, Chapel Hill; North Carolina State University (NCSU) and NCSU College of Veterinary Medicine, Raleigh.

Electron beam melting produces a coarse textured implant, whereas direct metal laser sintering can create either a fine or coarse textured surface. The researchers reported substantial differences between the two fine and coarse implants based on mechanical testing to assess osseointegration and torsional properties, and measures of bone volume fraction and bone-implant contact.

###

About the Journal

3D Printing and Additive Manufacturing is the only peer-reviewed journal focused on the rapidly moving field of 3D printing and related technologies. Led by Editor-in-Chief Skylar Tibbits Director, Self-Assembly Lab, MIT, and Founder & Principal, SJET LLC., the Journal explores emerging challenges and opportunities ranging from new developments of processes and materials, to new simulation and design tools, and informative applications and case studies. Published quarterly online with open access options and in print, the Journal spans a broad array of disciplines to address the challenges and discover new breakthroughs and trends within this groundbreaking technology. Tables of content and a sample issue may be viewed on the 3D Printing and Additive Manufacturing website.

About the Publisher

Mary Ann Liebert, Inc., publishers is a privately held, fully integrated media company known for establishing authoritative medical and biomedical peer-reviewed journals, including Big Data, Soft Robotics, New Space, and Tissue Engineering. Its biotechnology trade magazine GEN (Genetic Engineering & Biotechnology News) was the first in its field and is today the industry's most widely read publication worldwide. A complete list of the firm's more than 80 journals, newsmagazines, and books is available on the Mary Ann Liebert, Inc., publishers website.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.