Public Release: 

More rain for the Red Sea if El Niño breezes in

Modeling leads to a better understanding of the role El Niño plays in increasing rainfall along the Red Sea coast

King Abdullah University of Science & Technology (KAUST)

IMAGE

IMAGE: Vertical structure of the winter wind circulation over the Red Sea depicts the Red Sea Convergence Zone and the transport of moisture to the northern regions. view more 

Credit: © 2017 KAUST

he El Niño Southern Oscillation (ENSO) has been shown, for the first time, to play a role in increased rainfall and storms along the Red Sea and surrounding regions.

During the winter months, from October to March, the northern Red Sea experiences northwesterly winds from the Mediterranean and southeasterly winds from the Gulf of Aden. These form the Red Sea Convergence Zone (RSCZ), an area characterized by cloudy skies and drizzle that contrasts with the typically clear weather of the region.

Ibrahim Hoteit and colleagues from the Earth Fluid Modellng and Prediction group at KAUST have explored how the intensity and position of the RSCZ affects rainfall during the winter months, and how it is influenced by ENSO.

"The Red Sea is a narrow basin, and so requires high spatially resolved data to accurately describe variations in the RSCZ," explains Hoteit. "This means we require extensive and accurate datasets to assess the influence of ENSO variability on the region's rainfall."

The team modeled rainfall patterns for the period 1979-2016 by combining data from a number of datasets from NASA: the ERA-Interim global atmospheric reanalysis and the Advanced Very High Resolution Radiometer for sea surface temperatures, with satellite data from the Tropical Rainfall Measuring Mission and APHRODITE, a dataset containing gridded daily precipitation.

Using data on wind speeds and patterns, the researchers first identified the position and intensity of the RSCZ and the locations of the associated high and low pressure systems. Then, to explore the mechanisms responsible for rainfall they analyzed variables, such as convective available potential energy, total column perceptible water vapor, and evaporation.

"As rainfall intensity is associated with the meeting of different water vapor fluxes, we used a moisture budget analysis to identify the sources of moisture and to estimate the amount of rainfall in the region," says Hari Prasad the first author of the study.

They found that the RSCZ shifts northward during the warming El Niño phase of the ENSO, which transports more moisture from the Arabian Sea, increasing the number of rainy days and the intensity of rain events and resulting in cooler than normal air from the north combining with warm air from the south over the RSCZ.

"We are working on building advanced models for short and long-term predictions, as well as investigating how changes in the global circulation patterns during ENSO years are connected with the Red Sea weather and climate, and vice-versa," says Hoteit.

###

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.