News Release

Study solves mystery of how first animals appeared on Earth

Peer-Reviewed Publication

Australian National University

Jochen Brocks and Dr. Amber Jarrett, Australian National University

image: Associate Professor Jochen Brocks and Dr. Amber Jarrett with an oil sample taken ancient sedimentary rocks. view more 

Credit: Stuart Hay, ANU

Research led by The Australian National University (ANU) has solved the mystery of how the first animals appeared on Earth, a pivotal moment for the planet without which humans would not exist.

Lead researcher Associate Professor Jochen Brocks said the team found the answer in ancient sedimentary rocks from central Australia.

"We crushed these rocks to powder and extracted molecules of ancient organisms from them," said Dr Brocks from the ANU Research School of Earth Sciences.

"These molecules tell us that it really became interesting 650 million years ago. It was a revolution of ecosystems, it was the rise of algae."

Dr Brocks said the rise of algae triggered one of the most profound ecological revolutions in Earth's history, without which humans and other animals would not exist.

"Before all of this happened, there was a dramatic event 50 million years earlier called Snowball Earth," he said.

"The Earth was frozen over for 50 million years. Huge glaciers ground entire mountain ranges to powder that released nutrients, and when the snow melted during an extreme global heating event rivers washed torrents of nutrients into the ocean."

Dr Brocks said the extremely high levels of nutrients in the ocean, and cooling of global temperatures to more hospitable levels, created the perfect conditions for the rapid spread of algae. It was the transition from oceans being dominated by bacteria to a world inhabited by more complex life, he said.

"These large and nutritious organisms at the base of the food web provided the burst of energy required for the evolution of complex ecosystems, where increasingly large and complex animals, including humans, could thrive on Earth," Dr Brocks said.

The research is published in Nature, and the findings will be presented at the Goldschmidt Conference in Paris, France, this week.

Co-lead researcher Dr Amber Jarrett discovered ancient sedimentary rocks from central Australia that related directly to the period just after the melting of Snowball Earth.

"In these rocks we discovered striking signals of molecular fossils," said Dr Jarrett, an ANU Research School of Earth Sciences PhD graduate.

"We immediately knew that we had made a ground-breaking discovery that snowball Earth was directly involved in the evolution of large and complex life."

###

FOR INTERVIEW:

Associate Professor Jochen Brocks
ANU Research School of Earth Sciences
M: +61 432 470 006
Skype: jbrocks
E: jochen.brocks@anu.edu.au

Dr Brocks will be in France from Sunday 13 August until Saturday 19 August 2017. Best to contact him by email or WhatsApp in the first instance. He will be presenting his findings at the Goldschmidt Conference, which is organised by European Association of Geochemistry and the Geochemical Society.

FOR MEDIA ASSISTANCE:

Will Wright
ANU Media Team
T: +61 2 6125 7979
M: +61 478 337 740
E: media@anu.edu.au

Tom Parkhill
Goldschmidt Press Officer
T: +39 349 238 8191

Tom will be at the Goldschmidt Conference with Dr Brocks.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.