Public Release: 

Photocatalytic reduction of aqueous mercury (II) using hybrid WO3-TiO2 nanotubes film

This article by Dr. Wai Hong Lee et al. is published in Current Nanoscience, Volume 13, Issue 6, 2017

Bentham Science Publishers

Hybrid WO3-TiO2 nanotubes films were successfully formed via electrochemical anodization at applied potential of 40 V in ethylene glycol organic electrolyte containing 1 vol % of hydrogen peroxide (H2O2) and 0.3 wt % ammonium fluoride (NH4F) by varying the anodization time from 15 up to 120 minutes. A tungsten electrode was chosen as the cathode as an innovative and convenient approach to hybridize WO3 with TiO2 nanotubes film. During electrochemical anodization, W6+ ions dissolve from the cathode into the electrolyte solution, migrate towards the titanium foil and are deposited evenly on the Ti foil. This study recorded a maximum photocatalytic mercury(II) reduction performance of 91% (with exposure to 96W UV-B Germicidal light irradiation for 120 minutes) in the presence of WO3-TiO2 nanotubes film with the highest aspect ratio (53.04) and geometric surface area factor (345.68). The main reason for this might be attributed to the high specific surface area of the nanotubes architecture performed strong light scattering effects as well as better incident light absorption from any direction to trigger more charge carriers for photocatalytic reduction of mercury(II) into elemental mercury. WO3 acted as an effective mediator to trap the photo-induced electrons from the TiO2, by contributing intermediate energy band levels below the conduction band of TiO2.


Keywords: WO3-loaded TiO2 nanotubes; anodization; aspect ratio; geometric surface area factor; photocatalytic reduction of mercury (II)

For more information about the article, please visit

Reference: Lee WH, et al. Photocatalytic Reduction of Aqueous Mercury (II) Using Hybrid WO3-TiO2 Nanotubes Film. Current Nanoscience, 2017, Vol 13, Issue 6, DOI: 10.2174/1573413713666170616084447

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.