News Release

Bioelectronic 'nose' can detect food spoilage by sensing the smell of death

Peer-Reviewed Publication

American Chemical Society

Strong odors are an indicator that food has gone bad, but there could soon be a new way to sniff foul smells earlier on. As reported in ACS Nano, researchers have developed a bioelectronic "nose" that can specifically detect a key decay compound at low levels, enabling people to potentially take action before the stink spreads. It can detect rotting food, as well as be used to help find victims of natural disasters or crimes.  

When food begins to rot, the smell that we find repulsive comes from a compound known as cadaverine. That's also the substance responsible for the stench of rotting bodies, or cadavers -- hence the name. The compound is the result of a bacterial reaction involving lysine, which is an amino acid commonly found in various food products. A previous study has shown that a receptor in zebrafish has an affinity for cadaverine. To make this receptor in the laboratory, scientists have turned to E. coli as a host cell because it can easily produce large quantities of proteins. But the production of this receptor in E. coli has been a challenge because it needs to be in a membrane. One way to do this is to make the protein in a bacterial cell and reconstitute it in nanodiscs, which are water friendly, membrane-like structures that the receptor can reside in. So, Seunghun Hong, Tai Hyun Park and colleagues wanted to see if they could put the receptor into nanodiscs to create a sensitive and specific detector for cadaverine.  

The researchers successfully produced copies of the receptor in E. coli and assembled them into nanodiscs. The receptor-containing nanodiscs were then placed in a special orientation on a carbon nanotube transistor, completing the bioelectronic nose. During testing with purified test compounds and real-world salmon and beef samples, the nose was selective and sensitive for cadaverine, even at low levels. Additionally, the researchers say the detector could someday prove useful in finding bodies, since the compound is also produced when a person dies.  

###

The authors acknowledge funding from the National Research Foundation of Korea, the European Research Council, the BioNano Health Guard Research Center and the Korea Basic Science Institute.

The abstract that accompanies this study is available here.

The American Chemical Society, the world's largest scientific society, is a not-for-profit organization chartered by the U.S. Congress. ACS is a global leader in providing access to chemistry-related information and research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Follow us on Twitter | Facebook


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.