Public Release: 

Academics landmark book highlights processes which can tackle the impending crisis

Swansea University


IMAGE: This is the handbook. view more 

Credit: Professor Hilal Swansea University

Swansea University academics landmark book highlights processes which can tackle the impending crisis of water shortage

Two Swansea University chemical engineering academics have written a landmark handbook which gives a clear picture of the current state-of-the-art developments in salinity gradient processes in desalination, which are being widely accepted as one of the most promising processes to improve energy efficiency in desalination.

The impending crisis posed by water stress and poor sanitation represents one of the greatest human challenges for the 21st century, and membrane technology has emerged as a serious contender to confront the crisis on a global scale.

The energy efficient sustainable treatment of water is one of the key issues of the 21st century and with current global population growth, this importance is only going to increase. According to the United Nations there are over 750 million people that do not have access to an improved source of drinking water and water demand from industry is expected to increase by 400 per cent between 2000 and 2050 globally. However, this is a global issue as estimates have predicted that half of the world's population will suffer severe water shortages by 2050. This will be compounded by the world's population growth, set to increase from 7.6 billion at present to 9.8 billion by 2050. This indicates that the requirement for fresh water and management of wastewater will dramatically increase.

Seawater desalination is poised to become one of the main alternative freshwater resources as almost 60 percent of the world's population live less than 36 miles from a seacoast. Membrane based processes and desalination have emerged as technologies that will answer these challenges. This promise is recognised in market predictions with the global desalination market set to reach US$52.4 billion in 2020, an increase of 320 % from US$12.5 billion in 2010 and reverse osmosis membranes is set to have the largest growth in the membrane market segment reaching US$40 billion by 2020.

Professor Nidal Hilal, Director of the Centre for Water Advanced Technologies and Environmental Research (CWATER) at Swansea University and Editor-in-Chief of the International journal Desalination, and Dr Sarper Sarp (Lecturer in Chemical Engineering) both from the College of Engineering, Swansea University are the co-authors of the handbook titled 'Membrane Based Salinity Gradient Processes for Desalination'. Students, scientists and engineers will be able to see, for the first time, in one reference work the process development for low cost desalination and membrane preparation for salinity gradient applications in chemical engineering, environmental engineering, and material engineering. The book features a wide array of topics covering this emerging and important technological area.

The book consists of a series of chapters focused on the various types of membrane based salinity gradient processes, which can be applied for desalination. The topic areas discussed within the text, span over various types of salinity gradient processes for desalination such as Forward Osmosis (FO) and Pressure Retarded Osmosis (PRO) including the novel membranes, process developments, and case studies. The book not only gathers theoretical and fundamental approaches to salinity gradient processes but also highlights the full scale application approaches. A big part of the book is dedicated to membrane types, developments, and optimization, including but not limited to thin-film composite and hollow fiber membranes.


The book titled 'Membrane Based Salinity Gradient Processes for Desalination', ISBN 13: 9780444639615, will be released in July 2018.
Picture 1: Front cover of book
Picture 2: Professor Nidal Hilal
Picture 3: Dr Sarper Sarp


  • Full information about Professor Hilal's work can be found on

  • Full information about the Centre for Water Advanced Technologies and Environmental Research (CWATER) can be found on (

  • Full information about the College of Engineering research can be found on (

  • When reporting this story, please use Swansea University hyperlinks.

  • Swansea University is a world-class, research-led, dual campus university. The University was established in 1920 and was the first campus university in the UK. It currently offers around 350 undergraduate courses and 350 postgraduate courses to circa 20,000 undergraduate and postgraduate students.

The University's 46-acre Singleton Park Campus is located in beautiful parkland with views across Swansea Bay. The University's 65-acre science and innovation Bay Campus, which opened in September 2015, is located a few miles away on the eastern approach to the city. It has the distinction of having direct access to a beach and its own seafront promenade. Both campuses are close to the Gower Peninsula, the UK's first Area of Outstanding Natural Beauty.

Swansea is ranked the top university in Wales and is currently The Times and The Sunday Times 'Welsh University of the Year' for 2017. It is also ranked within the top 300 best universities in the world in the Times Higher Education World University rankings.

The results of the Research Excellence Framework (REF) 2014 showed the University has achieved its ambition to be a top 30 research University, soaring up the league table to 26th in the UK, with the 'biggest leap among research-intensive institutions' (Times Higher Education, December 2014) in the UK.

The University has ambitious expansion plans as it moves towards its centenary in 2020, as it continues to extend its global reach and realising its domestic and international ambitions.

Swansea University is a registered charity. No.1138342. Visit For more information, please contact Janis Pickwick, Swansea University Public Relations Office. Tel: 01792-295050, or email:

Follow us on Twitter:

Find us on Facebook:

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.