Public Release: 

Children's awarded $2.6 million to study stem cells for CHD-related neurological complications

Goal is to help congenital heart disease patients often suffering from hypoxia

Children's National Health System

WASHINGTON - (Jan. 17, 2017) - The National Institutes of Health (NIH) awarded researchers at Children's National Health System $2.6 million to expand their studies into whether human stem cells could someday treat and even reverse neurological damage in infants born with congenital heart disease (CHD).

Researchers estimate that 1.3 million infants are born each year with CHD, making it the most common major birth defect. Over the past 30 years, advances in medical technology and surgical practices have dramatically decreased the percentage of infants who die from CHD -- from a staggering rate of nearly 100 percent just a few decades ago to the current mortality rate of less than 10 percent.

The increased survival rate comes with new challenges: Children with complex CHD are increasingly diagnosed with significant neurodevelopmental delay or impairment. Clinical studies demonstrate that CHD can reduce oxygen delivery to the brain, a condition known as hypoxia, which can severely impair brain development in fetuses and newborns whose brains are developing rapidly.

Nobuyuki Ishibashi, M.D., the study's lead investigator with the Center for Neuroscience Research and director of the Cardiac Surgery Research Laboratory at Children's National, proposes transfusing human stem cells in experimental models through the cardiopulmonary bypass machine used during cardiac surgery.

"These cells can then identify the injury sites," says Dr. Ishibashi. "Once these cells arrive at the injury site, they communicate with endogenous tissues, taking on the abilities of the damaged neurons or glia cells they are replacing."

"Bone marrow stem cells are used widely for stroke patients, for heart attack patients and for those with developmental diseases," adds Dr. Ishibashi. "But they've never been used to treat the brains of infants with congenital heart disease. That's why we are trying to understand how well this system might work for our patient population."

Dr. Ishibashi says the research team will focus on three areas during their four-year study- whether the stem cells:

  • Reduce neurological inflammation,
  • Reverse or halt injury to the brain's white matter and
  • Help promote neurogenesis in the subventricular zone, the largest niche in the brain for creating the neural stem/progenitor cells leading to cortical growth in the developing brain.

At the conclusion of the research study, Dr. Ishibashi says the hope is to develop robust data so that someday an effective treatment will be available and lasting neurological damage in infants with congenital heart disease will become a thing of the past.

###

About Children's National Health System

Children's National Health System, based in Washington, D.C., has been serving the nation's children since 1870. Children's National is #1 for babies and ranked in every specialty evaluated by U.S. News & World Report and has been designated two times as a Magnet® hospital, a designation given to hospitals that demonstrate the highest standards of nursing and patient care delivery. This pediatric academic health system offers expert care through a convenient, community-based primary care network and specialty outpatient centers in the D.C. Metropolitan area including the Maryland suburbs and Northern Virginia. Home to the Children's Research Institute and the Sheikh Zayed Institute for Pediatric Surgical Innovation, Children's National is one of the nation's top NIH-funded pediatric institutions. Children's National is recognized for its expertise and innovation in pediatric care and as a strong voice for children through advocacy at the local, regional and national levels.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.