News Release

Stars around the Milky Way: Cosmic space invaders or victims of galactic eviction?

Peer-Reviewed Publication

LaGuardia Community College

Allyson Sheffield, LaGuardia Community College

video: 

'I'm really excited about the results of the Nature paper. Using chemical abundances, we chemically tagged stars in two groups of stars in the Milky Way, our home galaxy, to figure out if they formed in the Milky Way or in a small galaxy that the Milky Way accreted, which just means that the Milky Way pulled it in. This is just like DNA testing allows us to see how two people are related to each other.

My main contribution to this work was selecting stars for the initial observations. We found that stars in two of these groups, called Tri-And and A13, not only have nearly identical abundances to each other across several elements, but have similar abundances to the Milky Way's disc. We ran computer simulations and found that an accreted galaxy can dynamically perturb the disk, and literally, so come through, perturb the disc, and literally set the disc oscillating. And this can explain how these groups of stars were relocated or galactically evicted to the outer realms of the disc.

Ultimately, this work helps us understand how complex the disk really is, and how common these groups are at the fringe of the disk. And for future work, we're interested in carrying out similar analysis for other groups of stars in the Milky Way to see how common kicked out disk stars are. Stay tuned!' -- says Dr. Allyson Sheffield, associate professor of physics, LaGuardia Community College, part of The City University of New York (CUNY) view more 

Credit: LaGuardia Community College, part of The City University of New York (CUNY)

Astronomers have investigated a small population of stars in the halo of the Milky Way Galaxy, finding its chemical composition to closely match that of the Galactic disk. This similarity provides compelling evidence that these stars have originated from within the disk, rather than from merged dwarf galaxies. The reason for this stellar migration is thought to be theoretically proposed oscillations of the Milky Way disk as a whole, induced by the tidal interaction of the Milky Way with a passing massive satellite galaxy.

If anyone from outer space would like to contact you via "space mail", your cosmic address would include several more lines including "Earth", "Solar System", "Orion Spiral Arm" and "Milky Way Galaxy". This position within our home galaxy gives us a front row seat to explore what is happening in such a galaxy.

However, our internal perspective presents some challenges in our quest to understand it - for example for outlining its shape and extent. And yet another problem is time: How can we interpret galactic evolution if our own life span (and that of our telescopes) is far less than the blink of the cosmic eye?

Today, we have a fairly clear picture of the broad properties of the Milky Way and how it fits among other galaxies in the Universe. Astronomers classify it as a rather average, large spiral galaxy with the majority of its stars circling its center within a disk, and a dusting of stars beyond that orbiting in the Galactic halo.

These halo stars seem not to be randomly distributed in the halo - instead many are grouped together in giant structures - immense streams and clouds (or overdensities) of stars, some entirely encircling the Milky Way. These structures have been interpreted as signatures of the Milky Way's tumultuous past - debris from the gravitational disruption of the many smaller galaxies that are thought to have invaded our Galaxy in the past.

Researchers have tried to learn more about this violent history of the Milky Way by looking at properties of the stars in the debris left behind - their positions and motions can give us clues of the original path of the invader, while the types of stars they contain and the chemical compositions of those stars can tell us something about what the long-dead galaxy might have looked like.

An international team of astronomers led by Dr. Maria Bergemann from the Max Planck Institute for Astronomy in Heidelberg now found compelling evidence that some of these halo structures might not be leftover debris from invading galaxies but rather originate from the Milky Way's disk itself!

The scientists investigated 14 stars located in two different structures in the Galactic halo, the Triangulum-Andromeda (Tri-And) and the A13 stellar overdensities, which lie at opposite sides of the Galactic disk plane. Earlier studies of motion of these two diffuse structures revealed that they are kinematically associated and could be related to the Monoceros Ring, a ring-like structure that twists around the Galaxy. However, the nature and origin of these two stellar structures was still not conclusively clarified. The position of the two stellar overdensities could be determined as each lying about 5 kiloparsec (14000 lightyears) above and below the Galactic plane as indicated in figure 1 (see image).

Bergemann and her team, for the first time, now presented detailed chemical abundance patterns of these stars, obtained with high-resolution spectra taken with the Keck and VLT (Very Large Telescope, ESO) telescopes. "The analysis of chemical abundances is a very powerful test, which allows, in a way similar to the DNA matching, to identify the parent population of the star. Different parent populations, such as the Milky Way disk or halo, dwarf satellite galaxies or globular clusters, are known to have radically different chemical compositions. So once we know what the stars are made of, we can immediately link them to their parent populations.", explains Bergemann.

When comparing the chemical compositions of these stars with the ones found in other cosmic structures, the scientists were surprised to find that the chemical compositions are almost identical, both within and between these groups, and closely match the abundance patterns of the Milky Way disk stars. This provides compelling evidence that these stars most likely originate from the Galactic thin disk (the younger part of Milky Way, concentrated towards the Galactic plane) itself, rather being debris from invasive galaxies!

But how did the stars get to these extreme positions above and below the Galactic disk? Theoretical calculations of the evolution of the Milky Way Galaxy predict this to happen, with stars being relocated to large vertical distances from their place of birth in the disk plane. This "migration" of stars is theoretically explained by the oscillations of the disk as a whole. The favoured explanation for these oscillations is the tidal interaction of the Milky Way's Dark Matter halo and its disk with a passing massive satellite galaxy.

The results published in the journal Nature by Bergemann and her colleagues now provide the clearest evidence for these oscillations of the Milky Way's disk obtained so far!

These findings are very exciting, as they indicate that the Milky Way Galaxy's disk and its dynamics are significantly more complex than previously thought. "We showed that it may be fairly common for groups of stars in the disk to be relocated to more distant realms within the Milky Way--having been 'kicked out' by an invading satellite galaxy. Similar chemical patterns may also be found in other galaxies--indicating a potential galactic universality of this dynamic process." said Allyson Shefield, PhD, associate professor of physics at LaGuardia Community College/CUNY, a co-author on the study.

As a next step, the astronomers plan to analyse the spectra of other stars both in the two overdensities, as well as stars in other stellar structures further away from the disk. They are also very keen on getting masses and ages of these stars in order to constrain the time limits when this interaction of the Milky Way and a dwarf galaxy happened.

"We anticipate that ongoing and future surveys like 4MOST and Gaia will provide unique information about chemical composition and kinematics of stars in these overdensities. The two structures we have analysed already are, in our interpretation, associated with large-scale oscillations of the disk, induced by an interaction of the Milky Way and a dwarf galaxy. Gaia may have the potential to see the connection between the two structures, showing the full pattern of corrugations in the Galactic disk", says Bergemann, who is also part of the Collaborative Research Center SFB 881 "The Milky Way System", located at Heidelberg University.

###

Background information

The results described here were published in Bergemann et al., "Two chemically similar stellar overdensities on opposite sides of the plane of the Galactic Disk" in the journal Nature.

Information about advanced access to the Nature article can be obtained at press@nature.com.

The MPIA researchers involved were Maria Bergemann, Branimir Sesar and Andrew Gould in collaboration with Judith G. Cohen (California Institute of Technology), Aldo M. Serenelli (Institute of Space Sciences/IEEC-CSIC), Allyson Sheffield (LaGuardia Community College/CUNY), Ting S. Li (Fermi National Accelerator Laboratory), Luca Casagrande (The Australian National University), Kathryn Johnston and Chervin F.P. Laporte (both Columbia University, New York), Adrian M. Price-Whelan (Princeton University) and Ralph Schönrich (University of Oxford, UK).


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.