Public Release: 

New research boosts precision of T cell immunotherapies

Kole Roybal awarded first-ever Sartorius & Science Prize for Regenerative Medicine & Cell Therapy

American Association for the Advancement of Science

Washington, D.C. - Kole Roybal is the 2018 grand prize winner of the inaugural Sartorius & Science Prize for Regenerative Medicine & Cell Therapy, for developing a new class of T cell immunotherapies that can be fine-tuned to better help the immune system recognize cancer and initiate precise therapeutic action against the disease. The findings, described in his prize-winning essay, "Refining cell therapy," could eventually help overcome the major hurdles that currently hinder T cell immunotherapies from reaching their full potential, and offer patients more favorable treatment outcomes.

For most available T cell immunotherapies, T cells are engineered to recognize and eliminate tumors, but their activity is not specifically controlled, leading to toxicity and unwanted side effects in patients as a result of inflammation or in some cases suboptimal response to treatment. "If immune cell therapies for cancer or other diseases (like autoimmunity) are going to be safe and effective alternatives to more traditional medications, we must gain control over the activity of the cells to reduce risks of toxicity to the patient," said Roybal.

To address such obstacles, Roybal, now an assistant professor at the University of California, San Francisco and his colleague Leonardo Morsut turned to a signaling molecule on T cells known to be involved in several developmental and biological processed called the Notch receptor. Roybal reasoned that Notch could serve as a "sensor" able to detect disease or tissue-specific cues and initiate a more streamlined custom therapy. He developed "a la carte" synthetic Notch receptors (dubbed synNotch) that could be tailored towards a disease of interest, potentially bypassing harmful side effects and concentrating a treatment where it is needed the most.

In his award-winning essay, which will be published in the 9 March issue of Science, Roybal highlights the benefits of the novel technology. "SynNotch receptors essentially allow us to confine the T cell response at the site of disease with the goal of enhancing the ability of the T cell to, for example, overcome the inhospitable microenvironment of a solid tumor. SynNotch engineered T cells are also versatile in that they can either be used drive a potent immune response to cancer or suppress an immune response in an autoimmune setting," he said.

"We can also program these T cells to perform functions that are non-natural. We have shown that T cells can locally produce commercial therapeutics (such as antibodies) in a solid tumor. In principle, we hope to engineer T cells or other cell types to reside in the body long-term and produce therapeutics if they recognize disease or recurrence of disease. This is very much akin to our natural immune system, which is always poised to respond to infection," said Roybal.

"Dr. Kole Roybal's research has used innovative technologies to rewire the immune system to recognize disease states," said biomedicine editor Dr. Priscilla Kelly. "He identified a type of molecular sensor, which programmed T cells isolated from human blood with customized instructions for thwarting attack. In principal, this synthetic switch could respond to cancer and autoimmune conditions, and possibly disorders of nerve and muscle cells. Dr. Roybal's work shows how cutting-edge science can deliver therapeutic opportunities for currently intractable diseases."

Roybal noted that his team is working intensely on developing synNotch T cells for clinical targets. Next steps will include engineering T cells that reliably detect multiple features on cancers such as mesothelioma and glioblastoma, allowing for more precise targeting of these diseases. He is also working on new receptor types that could allow cell therapies to more effectively penetrate disease sites and reside there for the duration of the treatment. "This could be especially useful for the treatment of solid tumors where T cell therapies have been largely ineffective," Roybal said.

"Science is pleased to partner with Sartorius to recognize leading work in the rapidly developing fields of regenerative medicine and cell therapy", said Science editor-in-chief Dr. Jeremy Berg, "These fields and the inaugural awardee review how decades of work on basic biological mechanisms might be harnessed to yield new therapies."

Established in 2017, the Sartorius & Science Prize for Regenerative Medicine & Cell Therapy is an annual prize geared toward researchers focused on basic or translational research as described in a 1,000-word essay that advances regenerative medicine and cell therapy (including cell-, gene-, or immunotherapy, tissue engineering, and materials engineering). The winner is awarded $25,000 and publication of his or her essay in Science. The award is announced and presented at a ceremony for which Sartorius will provide financial support to help enable the grand prize winner to attend the ceremony.

Roybal, along with all finalists, will be recognized during a cocktail reception and ceremony that will take place on 20 March, beginning at 6:30 p.m. in the Alte Mensa at the University of Goettingen, Germany.

2018 Grand Prize Winner

Kole Roybal, for his essay "Refining Cell Therapy." Kole Roybal is an assistant professor in the Department of Microbiology and Immunology at the University of California, San Francisco, a member of the Parker Institute for Cancer Immunotherapy, and a Chan Zuckerberg Biohub Investigator. His laboratory harnesses the tools of synthetic and chemical biology to engineer the immune cell therapies for cancer and autoimmunity of the future. He received his doctorate from the University of Texas Southwestern Medical Center at Dallas. There he studied the fundamental cellular and biochemical mechanisms required for immune cell activation and clearance of infections. While a Jane Coffin Childs Postdoctoral Fellow at the University of California, San Francisco, he developed a new class of synthetic receptors, which provide unprecedented customization of therapeutic cells for the treatment of a broad range of diseases.

Finalist Shruti Naik, for her essay "The healing power of painful memories." Shruti Naik received her B.S. in cell and molecular biology from the University of Maryland and her Ph.D. in immunology from the University of Pennsylvania-National Institutes of Health Graduate Partnership Program. During her graduate training, she discovered that normal bacteria living on our skin educate the immune system and help protect us from harmful pathogens, opening the door for microbiota-based therapies in the skin. She is currently at Rockefeller University, where she is studying the interactions between immune cells and stem cells in an effort to develop stem cell-based therapies for inflammatory disorders. She is also a strong advocate for women in science.

Finalist Fotios Sampaziotis, for his essay "Building better bile ducts." Fotios Sampaziotis graduated from the University of Athens in Greece with a degree in medicine. He obtained a Ph.D. in stem cell biology from the University of Cambridge. During his doctoral research, he pioneered the use of bile duct organoids to model diseases of the biliary system, test multiple drugs, and identify new therapeutic agents. Currently, Fotios continues his research at the interface between basic science and clinical medicine as a clinical lecturer in hepatology at the University of Cambridge with clinical commitments in Addenbrooke's Hospital. His scientific work focuses on combining organoids, bioengineering, and animal studies to regenerate damaged bile ducts in the liver as an alternative therapy to liver transplantation.

Finalist Will Mclean, for his essay "Towards a true cure for hearing impairment." As an undergraduate, Will McLean studied biology at Tufts University before going on to attain a Ph.D. at the Massachusetts Institute of Technology within the Harvard-MIT Division of Health Sciences and Technology. While at MIT, his doctoral research elucidated the distinct progenitor cell types that exist within the inner ear and their capacity to form sensory cells and neural cell types. As a postdoctoral researcher at Harvard Medical School, he investigated the use of small-molecule drugs to manipulate signaling pathways to enable otherwise senescent progenitor cells of the cochlea to divide and form new sensory cells. He is currently vice president of biology and regenerative medicine at Frequency Therapeutics. Frequency is currently using insights from McLean's previous work to develop a drug to treat hearing loss by regenerating lost sensory cells.

For the full text of finalist essays and for information about applying for next year's awards, see the Science Web site at


About Sartorius
Sartorius Lab Instruments is a subsidiary of Sartorius AG that supplies high-quality laboratory instruments, high-grade consumables and excellent services. Customers are from research and quality assurance laboratories of the pharmaceutical, chemical and food industries as well as from the academic sector. The product portfolio focuses on high-value laboratory instruments, such as lab balances, pipettes and laboratory water purification systems. Moreover, a wide range of consumables, such as laboratory filters and pipette tips is offered. In laboratory weighing technology, Sartorius ranks as the world's second largest equipment supplier, and enjoys a strong position among the leading global suppliers for consumables, pipettes and laboratory water purification systems.

About AAAS
The American Association for the Advancement of Science (AAAS) is the world's largest general scientific society and publisher of the journal Science as well as Science Translational Medicine, Science Signaling, a digital, open-access journal, Science Advances, Science Immunology, and Science Robotics. AAAS was founded in 1848 and includes nearly 250 affiliated societies and academies of science, serving 10 million individuals. Science has the largest paid circulation of any peer-reviewed general science journal in the world. The non-profit AAAS is open to all and fulfills its mission to "advance science and serve society" through initiatives in science policy, international programs, science education, public engagement, and more. For the latest research news, log onto EurekAlert!, the premier science-news Web site, a service of AAAS. See

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.