Public Release: 

Startup scales up CNT membranes to make carbon-zero fuels for less than fossil fuels

Mattershift

Mattershift, an NYC-based startup with alumni from MIT and Yale has achieved a breakthrough in making carbon nanotube (CNT) membranes at large scale. The startup is developing the technology's ability to combine and separate individual molecules to make gasoline, diesel, and jet fuel from CO2 removed from the air.

Tests confirming that Mattershift's large-scale CNT membranes match the characteristics and performance of small prototype CNT membranes previously reported on in the scientific literature were published today in Science Advances. The paper was the result of a collaboration between Mattershift and researchers in the labs of Dr. Benny Freeman at The University of Texas at Austin and Dr. Jeffrey McCutcheon at the University of Connecticut.

For 20 years, researchers have shown that CNT membranes offer tremendous promise for a wide variety of uses including the low-cost production of ethanol fuel, precision drug delivery, low-energy desalination of seawater, purification of pharmaceutical compounds, and high-performance catalysis for the production of fuels. The difficulty and high cost of making CNT membranes has confined them to university laboratories and has been frequently cited as the limiting factor in their widespread use. Mattershift's ability to mass-produce CNT membranes unleashes the potential of this technology.

"Achieving large scale production of carbon nanotube membranes is a breakthrough in the membrane field," said Dr. Freeman, Professor of Chemical Engineering at UT Austin. "It's a huge challenge to take novel materials like these and produce them at a commercial level, so we're really excited to see what Mattershift has done here. There's such a large, unexplored potential for carbon nanotubes in molecular separations, and this technology is just scratching the surface of what's possible."

The company has already booked its first sales and will ship products later this year for use in a seawater desalination process that uses the least amount of energy ever demonstrated at pilot scale.

"We're excited to work with Mattershift because its membranes are uniquely tailored to allow salts to pass through our system while retaining our draw solute," said John Webley, CEO of Trevi Systems in Petaluma, California. "We already demonstrated the world's lowest energy desal process in our pilot plant in the UAE last year, and Mattershift's membranes are going to allow us to push the energy consumption even lower."

Three significant advances made this breakthrough possible. First, there has been a 100-fold reduction in the cost of carbon nanotubes in the last 10 years, with a corresponding increase in their quality. Second, is the growing understanding of how matter behaves in nano-confined environments like the interior of sub-nm CNTs, in which molecules move single file at high rates and act differently than they do in bulk fluids. And third, has been the increase in funding for tough tech startups, which enabled Mattershift to spend 5 years of intense R&D developing its technology.

"This technology gives us a level of control over the material world that we've never had before," said Mattershift Founder and CEO, Dr. Rob McGinnis. "We can choose which molecules can pass through our membranes and what happens to them when they do. For example, right now we're working to remove CO2 from the air and turn it into fuels. This has already been done using conventional technology, but it's been too expensive to be practical. Using our tech, I think we'll be able to produce carbon-zero gasoline, diesel, and jet fuels that are cheaper than fossil fuels."

Video Demo: Mattershift prototype testing for molecular extraction of fuel: vimeo.com/251516969

Using CNT membranes to produce fuels is actually just one example of a technology predicted by Nobel Prize winning physicist, Richard Feynman in the 1950s, known as Molecular Factories. Molecular Factories work by combining processes such as catalysis, separation, purification, and molecular-scale manipulation by nanoelectromechanical systems (NEMS) to make things from molecular building blocks. Each nanotube acts as a conveyor belt that performs functions on molecules as they pass through, single file, analogous to how factories function at the macro scale.

"It should be possible to combine different types of our CNT membranes in a machine that does what molecular factories have long been predicted to do: to make anything we need from basic molecular building blocks," said McGinnis. "I mean, we're talking about printing matter from the air. Imagine having one of these devices with you on Mars. You could print food, fuels, building materials, and medicines from the atmosphere and soil or recycled parts without having to transport them from Earth."

###

Mattershift designs and manufactures nanotube membranes for carbon-zero fuels, health and performance optimized air and water, and precision medicine. The startup was founded in 2013 to realize the potential of molecular factories, with the ultimate goal of printing matter from the air.

Mattershift was founded by Rob McGinnis. He was previously Co-founder and CTO of venture-backed startup Oasys Water, where his forward osmosis desalination technology cut the energy and cost of removing salt from water by 50%. McGinnis has authored over 30 patents and peer-reviewed articles in the fields of membranes, energy, desalination, and nanotechnology. He has a PhD in Environmental Engineering from Yale University.

Benny Freeman is the Richard B. Curran Centennial Chair in Engineering at The University of Texas at Austin in the McKetta Department of Chemical Engineering in the Cockrell School of Engineering. Dr. Freeman's research is in polymer science and engineering specifically in mass transport of small molecules in solid polymers. His laboratory focuses on gas and liquid separations using polymer and polymer-based membranes, developing and characterizing new materials for hydrogen separation, natural gas purification, carbon capture, water/ion separation, desalination, and fouling resistant membranes. His research is described in 395 publications and 22 patents/patent applications. He has co-edited 5 books on these topics. He has won numerous awards, including the PMSE Distinguished Service Award (2016), AIChE Clarence (Larry) G. Gerhold Award (2013), Society of Plastics Engineers International Award (2013), the ACS Award in Applied Polymer Science (2009), and the AIChE Institute Award for Excellence in Industrial Gases Technology (2008).

Jeffrey McCutcheon is an Associate Professor at the University of Connecticut in the Department of Chemical & Biomolecular Engineering. Dr. McCutcheon's research is in membrane separations with a focus on membrane fabrication and characterization. His group focuses on applications in liquid separations, including forward osmosis, membrane distillation, nanofiltration, and organic solvent separations. He has written 65 refereed publications, 3 patents, and 2 book chapters. He has won numerous awards including the FRI/John G. Kunesh Award from the AIChE Separations Division (2014), The DuPont Young Professor Award (2013), the 3M Nontenured Faculty Award (2011), and the Solvay Specialty Polymers Young Faculty Award (2011). He is President-elect of the North American Membrane Society and recently finished his term as Area Chair of Area 2D of the AIChE Separations Division (2015-2017).

Mattershift has been a member of the Grand Central Tech and The Hub incubators in NYC, and the Advanced Technology Laboratories Technology Incubation Program at UConn.

To read the article (full text), visit: http://advances.sciencemag.org/content/4/3/e1700938.full

Citation: McGinnis, R. L., Reimund, K., Ren, J., Xia, L., Chowdhury, M. R., Sun, X., Abril, M., Moon, J., Merrick, M. M., Park, J., Stevens, K. A., McCutcheon, J. R., Freeman, B. D. Large-scale polymeric carbon nanotube membranes with sub-1.27-nm pores. Sci. Adv. 2018, Vol. 4, no. 3, e1700938

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.