News Release

Escape artist

Ancient reptile Captorhinus could detach its tail to escape predator's grasp

Peer-Reviewed Publication

University of Toronto

Modern Reptile with Ability to Drop Tail

image: This is a picture of Ctenosaura sp. Mexico, common name spiny iguana, that has dropped and regenerated its tail! This kind of lizards probably only drop their tails when sufficient force is applied (by rivals or by predators grabbing the tails) and is most similar to captorhinid caudal autotomy. A bit of force was probably needed to break through the vertebrae. On the other hand, geckos are a good example of a voluntary kind of autotomy where they can just drop their tail if they FEEL threatened. view more 

Credit: Aaron LeBlanc

Imagine that you're a voracious carnivore who sinks its teeth into the tail of a small reptile and anticipates a delicious lunch, when, in a flash, the reptile is gone and you are left holding a wiggling tail between your jaws.

A new study by the University of Toronto Mississauga research team led by Professor Robert Reisz and PhD student Aaron LeBlanc, published March 5 in the open source journal, Scientific Reports, shows how a group of small reptiles who lived 289 million years ago could detach their tails to escape the grasp of their would-be predators -- the oldest known example of such behaviour. The reptiles, called Captorhinus, weighed less than 2 kilograms and were smaller than the predators of the time. They were abundant in terrestrial communities during the Early Permian period and are distant relatives of all the reptiles today.

As small omnivores and herbivores, Captorhinus and its relatives had to scrounge for food while avoiding being preyed upon by large meat-eating amphibians and ancient relatives of mammals. "One of the ways captorhinids could do this," says first author LeBlanc, "was by having breakable tail vertebrae." Like many present-day lizard species, such as skinks, that can detach their tails to escape or distract a predator, the middle of many tail vertebrae had cracks in them.

It is likely that these cracks acted like the perforated lines between two paper towel sheets, allowing vertebrae to break in half along planes of weakness. "If a predator grabbed hold of one of these reptiles, the vertebra would break at the crack and the tail would drop off, allowing the captorhinid to escape relatively unharmed," says Reisz, a Distinguished Professor of Biology at the University of Toronto Mississauga.

The authors note that being the only reptiles with such an escape strategy may have been a key to their success, because they were the most common reptiles of their time, and by the end of the Permian period 251 million years ago, captorhinids had dispersed across the ancient supercontinent of Pangaea. This trait disappeared from the fossil record when Captorhinus died out; it re-evolved in lizards only 70 million years ago.

They were able to examine more than 70 tail vertebrae -- both juveniles and adults -- and partial tail skeletons with splits that ran through their vertebrae. They compared these skeletons to those of other reptilian relatives of captorhinids, but it appears that this ability is restricted to this family of reptiles in the Permian period.

Using various paleontological and histological techniques, the authors discovered that the cracks were features that formed naturally as the vertebrae were developing. Interestingly, the research team found that young captorhinids had well-formed cracks, while those in some adults tended to fuse up. This makes sense, since predation is much greater on young individuals and they need this ability to defend themselves.

###

This study was possible thanks to the treasure trove of fossils available at the cave deposits near Richards Spur, Oklahoma.

The study's research team was comprised of: Reisz; LeBlanc, who is now a Killam Postdoctoral Fellow at the University of Alberta; research assistant Diane Scott; graduate student Yara Haridy; and Dr. Mark MacDougall, now a DAAD Postdoctoral Fellow at the Humboldt University.

Contact:

Professor Robert Reisz
Distinguished Professor of Biology
U of T Mississauga
647-830-5364
robert.reisz@utoronto.ca

Aaron LeBlanc, Killam postdoctoral fellow
University of Alberta, Department of Biological Sciences
arl@ualberta.ca
780-710-4699

Nicolle Wahl
Assistant Director, Communications, UTM
905-569-4656
nicolle.wahl@utoronto.ca


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.