Public Release: 

Twisting laser light offers the chance to probe the nano-scale

A new method to sensitively measure the structure of molecules has been demonstrated by twisting laser light and aiming it at miniscule gold gratings to separate out wavelengths

University of Bath

A new method to sensitively measure the structure of molecules has been demonstrated by twisting laser light and aiming it at miniscule gold gratings to separate out wavelengths.

The technique could potentially be used to probe the structure and purity of molecules in pharmaceuticals, agrochemicals, foods and other important products more easily and cheaply than existing methods.

Developed by physicists at the University of Bath, working with colleagues at the University of Cambridge and University College London, the technique relies on the curious fact that many biological and pharmaceutical molecules can be either 'left-handed' or 'right-handed'.

Although such molecules are built from exactly the same elements they can be arranged in mirror images of each other, and this configuration sometimes changes their properties drastically.

Notoriously the morning sickness drug Thalidomide caused birth defects and deaths in babies before it was pulled from the market in the 1960s. Investigation showed that the drug existed in two mirror images - the right-handed form was effective as a morning sickness drug, but the left-handed form was harmful to foetuses. This is one example of why testing what 'handedness', or chirality, a molecule has is essential for many valuable products.

The research team from the Centre for Photonics and Photonic Materials, and the Centre for Nanoscience and Nanotechnology at the University of Bath, used a special white-light laser built in-house and directed it through several optical components to put a twist on the beam. The twisted laser beam then hits a nano-scopic U-shaped gold grating which serves as a template for the light, further twisting the beam in either a right or left-handed direction. This deflects the beam in many directions and further splits it into its constituent wavelengths across the colour spectrum.

By carefully measuring the deflected light scientists can detect tiny differences in intensity across the spectrum which inform them about the chirality of the grating the laser beam interacts with.

The study, published in the journal Advanced Optical Materials, demonstrates the technique as a proof of principle.

Christian Kuppe, the PhD student who conducted the experiments, said: "At the moment chiral sensing requires high molecular concentrations because you're looking for tiny differences in how the light interacts with the target molecule.

"By using our gold gratings we aim to use a much smaller amount of molecules to conduct a very sensitive test of their handedness. The next step will be to continue to test the technique with a range of well-known chiral molecules.

"We hope that this will become a valuable way to perform really important tests on all sorts of products including pharmaceuticals and other high-value chemicals."

Dr Ventsislav Valev, who oversaw the work, said: "There's a great deal of scientific excitement about miniaturisation and working on nano-sized dimensions at the very small scale. However, in the rush to go as small as possible, some opportunities have been overlooked. Working with chiral nano-gratings is a great example of that."

###

The researchers were funded by grants from the Royal Society, European Research Council, China Scholarship Council and Engineering and Physical Sciences Research Council (EPSRC).

For further information, please contact Chris Melvin in the University of Bath Press Office on +44 (0)1225 383 941 or c.m.melvin@bath.ac.uk

Notes

The University of Bath is one of the UK's leading universities both in terms of research and our reputation for excellence in teaching, learning and graduate prospects.

The University is rated Gold in the Teaching Excellence Framework (TEF), the Government's assessment of teaching quality in universities, meaning its teaching is of the highest quality in the UK.

In the Research Excellence Framework (REF) 2014 research assessment 87 per cent of our research was defined as 'world-leading' or 'internationally excellent'. From making aircraft more fuel efficient, to identifying infectious diseases more quickly, or cutting carbon emissions through innovative building solutions, research from Bath is making a difference around the world. Find out more: http://www.bath.ac.uk/research/

Well established as a nurturing environment for enterprising minds, Bath is ranked highly in all national league tables. We are ranked 5th in the UK by The Guardian University Guide 2018 and 6th for graduate employment. According to the Times Higher Education Student Experience Survey 2017, we are in the top 5 universities students would recommend to a friend.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.