News Release

Self-healing material a breakthrough for bio-inspired robotics

Peer-Reviewed Publication

College of Engineering, Carnegie Mellon University

A Quadruped Robot Heals Itself with New Material

video: A robotic quadruped continues to function despite damage, demonstrating the spontaneous, self-healing property of a new material developed at Carnegie Mellon University's Soft Materials Laboratory. view more 

Credit: Nature Materials

Many natural organisms have the ability to repair themselves. Now, manufactured machines will be able to mimic this property. In findings published this week in Nature Materials, researchers at Carnegie Mellon University have created a self-healing material that spontaneously repairs itself under extreme mechanical damage.

This soft-matter composite material is composed of liquid metal droplets suspended in a soft elastomer. When damaged, the droplets rupture to form new connections with neighboring droplets and reroute electrical signals without interruption. Circuits produced with conductive traces of this material remain fully and continuously operational when severed, punctured, or had material removed.

Applications for its use include bio-inspired robotics, human-machine interaction, and wearable computing. Because the material also exhibits high electrical conductivity that does not change when stretched, it is ideal for use in power and data transmission.

"Other research in soft electronics has resulted in materials that are elastic and deformable, but still vulnerable to mechanical damage that causes immediate electrical failure," said Carmel Majidi, an associate professor of mechanical engineering. "The unprecedented level of functionality of our self-healing material can enable soft-matter electronics and machines to exhibit the extraordinary resilience of soft biological tissue and organisms."

Majidi, who directs the Integrated Soft Materials Laboratory, is a pioneer in developing new classes of materials in the fields of soft matter engineering and soft robotics.

"If we want to build machines that are more compatible with the human body and the natural environment, we have to start with new types of materials," he said.

###

Majidi holds a courtesy appointment in the Robotics Institute. Other authors include Eric Markvicka and Xiaonan Huang of Carnegie Mellon University, and Michael D. Bartlett of Iowa State University.

The findings were reported in "An autonomously electrically self-healing liquid metal–elastomer composite for robust soft-matter robotics and electronics", Nature Materials, DOI: 10.1038/s41563-018-0084-7

The authors acknowledge support from the NASA Early Career Faculty Award (NNX14AO49G; Research Collaborator: Dr. Bill Bluethmann) and AFOSR Multidisciplinary University Research Initiative (FA9550-18-1-0566; Program Manager: Dr. Ken Goretta). Sensor and mechanical characterization was performed on equipment supported through an Office of Naval Research (ONR) Defense University Research Instrumentation Program (DURIP) (N00014140778; Bioinspired Autonomous Systems; PM: Dr. Tom McKenna).

About the College of Engineering: The College of Engineering at Carnegie Mellon University is a top-ranked engineering college that is known for our intentional focus on cross-disciplinary collaboration in research. The College is well-known for working on problems of both scientific and practical importance. Our "maker" culture is ingrained in all that we do, leading to novel approaches and transformative results. Our acclaimed faculty have a focus on innovation management and engineering to yield transformative results that will drive the intellectual and economic vitality of our community, nation and world.

About Carnegie Mellon University: Carnegie Mellon is a private, internationally ranked university with programs in areas ranging from science, technology and business to public policy, the humanities and the arts. More than 13,000 students in the university's seven schools and colleges benefit from a small faculty-to-student ratio and an education characterized by its focus on creating and implementing solutions for real world problems, interdisciplinary collaboration and innovation.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.