Public Release: 

New brain development disorder identified by scientists

eLife

Researchers have identified a new inherited neurodevelopmental disease that causes slow growth, seizures and learning difficulties in humans.

Writing in the journal eLife, the team reveals that this disease is caused by a recessive mutation in CAMK2A - a gene that is well known for its role in regulating learning and memory in animals. The findings suggest that dysfunctional CAMK2 genes may contribute to other neurological disorders, such as epilepsy and autism, opening up potential new avenues for treating these conditions.

"A significant number of children are born with growth delays, neurological defects and intellectual disabilities every year across the world," explains senior author Bruno Reversade, Research Director at the Institute of Medical Biology and Institute of Molecular and Cell Biology, A*STAR, Singapore, who supervised the study. "While specific genetic mutations have been identified for some patients, the cause remains unknown in many cases. Identifying novel mutations would not only advance our understanding of neurological diseases in general, but would also help clinicians diagnose children with similar symptoms and/or carry out genetic testing for expecting parents."

The team's research began when they identified a pair of siblings who demonstrated neurodevelopmental delay with frequent, unexplained seizures and convulsions. While the structure of their bodies developed normally, they did not gain the ability to walk or speak. "We believed that the children had novel mutations in CAMK2A, and we wanted to see if this were true," says Reversade.

The fully functional CAMK2A protein consists of multiple subunits. Using a genomic technique called exome sequencing, the team discovered a single coding error affecting a key residue in the CAMK2A gene that prevents its subunits from assembling correctly.

Moving their studies into the roundworm Caenorhabditis elegans, the scientists saw that this mutation disrupts the ability of CAMK2A to ensure proper neuronal communication and normal motor function. This suggests that the mutation is indeed the cause of the neurodevelopmental defects seen in the siblings.

To the best of the team's knowledge, this new disorder represents the first human disease caused by inherited mutations on both copies of the CAMK2A gene. In addition, another report* published recently identified single-copy mutations on both CAMK2A and CAMK2B that caused intellectual disabilities as soon as the mutations occurred. "We would like to bring these findings to the attention of those working in the area of paediatric genetics, such as clinicians and genetic counsellors, as there are likely more undiagnosed children with similar symptoms who have mutations in their CAMK2A gene," explains co-first author Franklin Zhong, Research Scientist in Reversade's lab at A*STAR.

"Neuroscientists working to understand childhood brain development, neuronal function and memory formation also need to consider this new disease, since CAMK2A is associated with these processes. In future, it would be interesting to test whether restoring CAMK2A activity can bring therapeutic benefit to patients with this condition, as well as those with related neurological disorders."

###

References

The paper 'A homozygous loss-of-function CAMK2A mutation causes growth delay, frequent seizures and severe intellectual disability' can be freely accessed online at https://doi.org/10.7554/eLife.32451. Contents, including text, figures and data, are free to reuse under a CC BY 4.0 license.

*Kury, S., van Woerden, G.M., Besnard, T., Proietti Onori, M., Latypova, X., Towne, M.C., Cho, M.T., Prescott, T.E., Ploeg, M.A., Sanders, S., et al. (2017). De Novo Mutations in Protein Kinase Genes CAMK2A and CAMK2B Cause Intellectual Disability. The American Journal of Human Genetics 101, 768-788.

Media contacts

Emily Packer, Senior Press Officer
eLife
e.packer@elifesciences.org
01223 855373

Sunanthar Lu, Senior Officer, Corporate Communications
Agency for Science, Technology and Research (A*STAR)
Sunanthar_Lu@hq.a-star.edu.sg
+65 6517 1966

About eLife

eLife aims to help scientists accelerate discovery by operating a platform for research communication that encourages and recognises the most responsible behaviours in science. We publish important research in all areas of the life and biomedical sciences, which is selected and evaluated by working scientists and made freely available online without delay. eLife also invests in innovation through open-source tool development to accelerate research communication and discovery. Our work is guided by the communities we serve. eLife is supported by the Howard Hughes Medical Institute, the Max Planck Society, the Wellcome Trust and the Knut and Alice Wallenberg Foundation. Learn more at https://elifesciences.org/about.

About A*STAR's Institute of Medical Biology (IMB)

IMB is one of the Biomedical Sciences Institutes of the Agency for Science, Technology and Research (A*STAR). It was formed in 2007, with a mission to study mechanisms of human disease in order to discover new and effective therapeutic strategies for improved quality of life.

IMB has 20 research teams working in three primary focus areas - stem cells, genetic disease, and skin biology. The teams work closely with clinical collaborators as well as industry partners, to target the challenging interface between basic science and clinical medicine. IMB's strategic research topics are targeted at translational research to understand the mechanisms of human disease so as to identify new strategies for disease amelioration, cure and eradication and to improve health and wellbeing. Since 2011, IMB has also hosted the inter-research institute Skin Biology Cluster platform, and leads major strategic funding programs in rare genetic diseases and in skin biology. In 2013, IMB became a founding institute of the Skin Research Institute of Singapore. For more information about IMB, please visit http://www.imb.a-star.edu.sg.

About the Agency for Science, Technology and Research (A*STAR)

A*STAR is Singapore's lead public sector agency that spearheads economic oriented research to advance scientific discovery and develop innovative technology. Through open innovation, we collaborate with our partners in both the public and private sectors to benefit society.

As a Science and Technology Organisation, A*STAR bridges the gap between academia and industry. Our research creates economic growth and jobs for Singapore, and enhances lives by contributing to societal benefits such as improving outcomes in healthcare, urban living, and sustainability.

We play a key role in nurturing and developing a diversity of talent and leaders in our Agency and research entities, the wider research community and industry. A*STAR's research and development activities span biomedical sciences and physical sciences and engineering, with research entities primarily located in Biopolis and Fusionopolis. For ongoing news, visit http://www.a-star.edu.sg.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.