Public Release: 

Novel microplate 3D bioprinting platform for muscle & tendon tissue engineering

SLAS (Society for Laboratory Automation and Screening)

IMAGE

IMAGE: Postholder insert for the printing of dumbbell-shaped muscle-tendon tissues in a 24-well plate (left above: postholder, right above: postholder in 24-well plate [top view], bottom: bioprinted muscle tissue in 24-well... view more 

Credit: Zurich University of Applied Sciences (ZHAW)

There is a strong need for medication that treats age-related degenerative muscle and tendon diseases. A critical bottleneck in the discovery and development of novel drugs for skeletal muscle is the lack of efficient and robust functional in vitro assays for compound screening.

In a new SLAS Technology original research article available now for free ahead-of-print, researchers in Switzerland describe the development of a novel screening platform with automated production of 3D muscle- and tendon-like tissues using 3D bioprinting. The novelty and importance of this new approach is the combination of the automated musculoskeletal tissue production using 3D bioprinting with a new microwell plate addressing the specific tissue attachment requirements. Thus, this screening platform represents a promising new tool for musculoskeletal drug discovery and development.

Muscle and tendon tissue models are fabricated by printing alternating layers of photo-polymerized gelatin-methacryloyl-based bioink and cell suspensions in a dumbbell shape onto a newly designed cell culture insert in 24-well plates containing two vertical posts. The cells show high viability after printing in culture and good tissue differentiation based on marker gene and protein expressions.

In addition, functionality of the muscle tissue models is demonstrated by calcium signaling of Fluo4-loaded cells and myofiber contractility induced by electrical pulse stimulation. Finally, the authors successfully fabricate tendon-muscle-tendon co-cultures by printing tenocytes around the posts of the cell culture inserts and myoblasts between the posts.

###

A Novel Microplate 3D Bioprinting Platform for the Engineering of Muscle and Tendon Tissues can be accessed for free at http://journals.sagepub.com/doi/full/10.1177/2472630318776594. For more information about SLAS and its journals, visit http://www.slas.org/journals.

A PDF of this article is available to credentialed media outlets upon request. Contact nhallock@slas.org.

About our Society and Journals

SLAS (Society for Laboratory Automation and Screening) is an international community of nearly 20,000 professionals and students dedicated to life sciences discovery and technology. The SLAS mission is to bring together researchers in academia, industry and government to advance life sciences discovery and technology via education, knowledge exchange and global community building.

SLAS DISCOVERY: 2016 Impact Factor 2.444. Editor-in-Chief Robert M. Campbell, Ph.D., Eli Lilly and Company, Indianapolis, IN (USA). SLAS Discovery (Advancing Life Sciences R&D) was previously published (1996-2016) as the Journal of Biomolecular Screening (JBS).

SLAS TECHNOLOGY: 2016 Impact Factor 2.850. Editor-in-Chief Edward Kai-Hua Chow, Ph.D., National University of Singapore (Singapore). SLAS Technology (Translating Life Sciences Innovation) was previously published (1996-2016) as the Journal of Laboratory Automation (JALA).

Follow SLAS on Twitter at @SLAS_Org.

Follow SLAS on Facebook at SocietyforLaboratoryAutomationandScreening.

Follow SLAS on YouTube at SLASvideo.

Follow SLAS Americas on LinkedIn at Society for Laboratory Automation and Screening (SLAS Americas).

Follow SLAS Europe on LinkedIn at Society for Laboratory Automation and Screening Europe (SLAS Europe).

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.