Public Release: 

Excited atoms throw light on anti-hydrogen research

Swansea team at heart of CERN project breakthrough

Swansea University


IMAGE: A positron beam line transports the positrons from the source into the main antihydrogen trap. view more 

Credit: Swansea University

Swansea University scientists working at CERN have published a study detailing a breakthrough in antihydrogen research.

The scientists were working as part of the ALPHA collaboration which is made up of researchers and groups from over a dozen institutions from all over the world, with the UK contingent led by Swansea University's Professor Mike Charlton.

The research, funded by the EPSRC, was obtained using apparatus at the Antiproton Decelerator facility at CERN, and has been published in the Nature journal.

The Experiment:

The ALPHA team experiment shows how the scientists improved efficiency in the synthesis of antihydrogen, and for the first time succeeded in accumulating the anti-atoms, which has allowed for greater scope in their experimentation.

Professor Charlton said: "When an excited atom relaxes, it emits light of a characteristic colour, the yellow colour of sodium street lights is an everyday example of this. When the atom is hydrogen, which is a single electron and a single proton, and the excited electron decays to the lowest energy state from a higher one, the discrete series of ultraviolet light emitted forms the Lyman Series, which is named after Theodore Lyman who first observed this over 100 years ago.

"The presence of these discrete lines helped to establish the theory of quantum mechanics which governs the world at an atomic level and is one of the corner stones of modern Physics.

"The Lyman-alpha line is of fundamental importance in physics and astronomy. For example, observations in astronomy on how the line from distant emitters is shifted to longer wavelengths (known as the redshift), gives us information on how the universe evolves, and allows testing models which predict its future"

This experiment is the first time the Lyman-alpha transition - when the hydrogen electron transitions between the so-called 1S and 2P state, emitting or absorbing UV light of 121.6 nm wavelength - has been observed in anti-hydrogen. Antihydrogen is the antimatter counterpart to hydrogen, and is comprised of a single anti-proton and a single anti-electron with the latter particle also known as a positron.

Excited Atoms

For this experiment, the physicists accumulated about 500 antihydrogen atoms in the trap. If they did nothing, they could hold these atoms for many, many, hours without loss. However, by illuminating the trapped atoms with various colours of UV light, the team could drive the Lyman-alpha transition and excite the antihydrogen atoms.

These excited atoms are no longer trapped within the apparatus and, being comprised of antimatter, promptly annihilate with the surrounding matter of the equipment and are detected.

This observation is significant as it is yet another test of a property of antihydrogen that is in good agreement with that of hydrogen. It is also a key step towards the production of ultra-cold antihydrogen atoms, which will greatly improve the ability to control, manipulate and perform further precision studies on the anti-atom.

Professor Charlton said: "This represents another landmark advance in atomic physics, which should open the way to manipulation of the kinetic energies of the trapped anti-atoms

"While studies have continued at the Antiproton Decelerator facility at CERN, further refining these measurements and using the techniques to improve our understanding of the antihydrogen through spectroscopy, the ALPHA team will be modifying the apparatus in order to study the effect of Earth's gravity on the anti-atom. The next few months will be an exciting time for all concerned."



A positron beam line - it transports the positrons from the source into the main antihydrogen trap


When reporting this story, please use Swansea University hyperlinks.

  • Swansea University is a world-class, research-led, dual campus university offering a first class student experience and has one of the best employability rates of graduates in the UK.
  • The University has the highest possible rating for teaching - the Gold rating in the Teaching Excellence Framework (TEF) in 2018 and was commended for its high proportions of students achieving consistently outstanding outcomes.
  • The Physics Department at Swansea University is ranked 13th in the UK and best in Wales in the Guardian University Guide, 2019. Based at our Singleton Park Campus, our students benefit from a £4.2M investment in lab facilities and social learning spaces. Our students voted us as the 2nd best Physics department in the UK in the 2018 National Student Survey, with a satisfaction score of 97%. Students are taught by world-class academics, who are active in research areas such as the trapping of anti-matter. The Department has close links with CERN and there are opportunities for students to visit and take part in CERN-based projects and research activity.
  • Swansea climbed 14 places to 31st in the Guardian University Guide 2019, making us Wales' top ranked university, with one of the best success rates of graduates gaining employment in the UK and the same overall satisfaction level as the Number 1 ranked university.
  • The 2014 Research Excellence Framework (REF) 2014 results saw Swansea make the 'biggest leap among research-intensive institutions' in the UK (Times Higher Education, December 2014) and achieved its ambition to be a top 30 research University, soaring up the league table to 26th in the UK.
  • The University is in the top 300 best universities in the world, ranked in the 251-300 group in The Times Higher Education World University rankings 2018. Swansea University now has 23 main partners, awarding joint degrees and post-graduate qualifications.
  • The University was established in 1920 and was the first campus university in the UK. It currently offers around 350 undergraduate courses and 350 postgraduate courses to circa 20,000 undergraduate and postgraduate students.
  • The University has ambitious expansion plans as it moves towards its centenary in 2020 and aims to continue to extend its global reach and realise its domestic and international potential.

Swansea University is a registered charity. No.1138342. Visit

For more information, please contact Kevin Sullivan, Swansea University Public Relations Office.Tel: 01792 513245, or email:

Follow us on Twitter:

Find us on Facebook:

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.