News Release

New lentivirus-based tool assesses effect of Wnt/ß-Catenin signaling on bone regeneration

Peer-Reviewed Publication

Mary Ann Liebert, Inc./Genetic Engineering News

<em>Tissue Engineering, Part A</em>

image: Tissue Engineering brings together scientific and medical experts in the fields of biomedical engineering, material science, molecular and cellular biology, and genetic engineering. view more 

Credit: Mary Ann Liebert, Inc., publishers

New Rochelle, NY, September 3, 2018--Researchers have developed a novel tool for determining the sensitivity of bone healing to inhibition of the Wnt signaling pathway and have validated its use in a study of bone regeneration in mice. The tool, which is based on a lentivirus encoding a ß-catenin shRNA model, is described in an article published in Tissue Engineering, Part A, peer-reviewed journal from Mary Ann Liebert, Inc., publishers. Click here to read the article free on the Tissue Engineering website until October 3, 2018.

Aaron James, MD, PhD, Johns Hopkins University (JHU, Baltimore, MD) and coauthors from JHU, China Medical University (Shenyang), University of California San Diego, School of Medicine, University of California Los Angeles, UCLA School of Dentistry, and UCLA David Geffen School of Medicine report their findings in the article entitled "Frontal Bone Healing Is Sensitive to Wnt Signaling Inhibition Via Lentiviral Encoded Beta-Catenin Short Hairpin RNA." Their lentiviral model allows for specific and localized inhibition of the Wnt/ß-Catenin signaling pathway, which plays a critical role in skeletal biology. Researchers can use the model to determine the effect of Wnt/ß-Catenin inhibition on bone maintenance and regeneration during bone repair.

"The continued development of gene therapy approaches is critical to the success of the regenerative medicine field. The work presented here by Dr. James and his collaborators demonstrates a critical success in this field and its particularly important application in bone tissue engineering," says Tissue Engineering Co-Editor-in-Chief John P. Fisher, PhD, Fischell Family Distinguished Professor & Department Chair, and Director of the NIH Center for Engineering Complex Tissues at the University of Maryland, College Park.

###

About the Journal

Tissue Engineering is an authoritative peer-reviewed journal published monthly online and in print in three parts: Part A, the flagship journal published 24 times per year; Part B: Reviews, published bimonthly, and Part C: Methods, published 12 times per year. Led by Co-Editors-in-Chief Antonios G. Mikos, PhD, Louis Calder Professor at Rice University, Houston, TX, and John P. Fisher, PhD, Fischell Family Distinguished Professor & Department Chair, and Director of the NIH Center for Engineering Complex Tissues at the University of Maryland, the Journal brings together scientific and medical experts in the fields of biomedical engineering, material science, molecular and cellular biology, and genetic engineering. Leadership of Tissue Engineering Parts B (Reviews) and Part C (Methods) is provided by Katja Schenke-Layland, PhD, Eberhard Karls University, Tübingen and John A. Jansen, DDS, PhD, Radboud University, respectively. Tissue Engineering is the official journal of the Tissue Engineering & Regenerative Medicine International Society (TERMIS). Complete tables of content and a sample issue may be viewed on the Tissue Engineering website.

About the Publisher

Mary Ann Liebert, Inc., publishers is a privately held, fully integrated media company known for establishing authoritative peer-reviewed journals in many promising areas of science and biomedical research, including Stem Cells and Development, Human Gene Therapy, and Advances in Wound Care. Its biotechnology trade magazine, GEN (Genetic Engineering & Biotechnology News), was the first in its field and is today the industry's most widely read publication worldwide. A complete list of the firm's 80 journals, books, and newsmagazines is available on the Mary Ann Liebert, Inc., publishers website.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.