News Release

Novel DNA vaccine design offers broad protection against influenza-A H3N2

Peer-Reviewed Publication

Mary Ann Liebert, Inc./Genetic Engineering News

<i>Human Gene Therapy</i>

image: Human Gene Therapy presents reports on the transfer and expression of genes in mammals, including humans. view more 

Credit: Mary Ann Liebert, Inc., publishers

New Rochelle, NY, October 18, 2018--Researchers developed a novel DNA influenza vaccine based on four micro-consensus antigenic regions selected to represent the diversity of seasonal H3N2 viruses across decades. The DNA vaccine protected mice against a lethal challenge with more than one influenza-A H3N2 virus and protected them from severe H3N2-related illness despite the lack of an exact sequence match between the vaccine immunogen and H3 immunogen. The findings are reported in a new Special Issue on DNA Vaccines in Human Gene Therapy," a peer-reviewed journal from Mary Ann Liebert, Inc., publishers. Click here to read the full-text article free on the Human Gene Therapy website through November 18, 2018.

David Weiner, The Wistar Institute of Anatomy & Biology, Philadelphia, PA, and coauthors from Wistar and Inovio Pharmaceuticals, Plymouth Meeting, PA conducted the study entitled " A Synthetic Micro-Consensus DNA Vaccine Generates Comprehensive Influenza-A H3N2 Immunity and Protects Mice Against Lethal Challenge by Multiple H3N2 Viruses." This new DNA vaccine strategy was intended to elicit a comprehensive immune response and to represent a step forward in eliminating the need to reformulate a seasonal vaccine each year to protect against influenza-A H3N2.

The researchers designed a vaccine designed to elicit broad immune responses against di-verse influenza-A H3N2 viruses by engineering four synthetic hemagglutinin H3 immu-nogens. The H3 sequences used were chosen by aligning sequences from 233 influenza-A H3N2 strains representing viruses from across multiple decades. The researchers identi-fied four micro-consensus sequences with sufficient sequence similarity to predict cross-reactive immune responses against diverse H3N2 strains.

"Influenza continues to be a major cause of morbidity and mortality worldwide, as the virus continuously changes to evade the human immune system," says Editor-in-Chief Terence R. Flotte, MD, Celia and Isaac Haidak Professor of Medical Education and Dean, Provost, and Executive Deputy Chancellor, University of Massachusetts Medical School, Worcester, MA. "The approach developed by the Wistar Institute team holds great promise as a means to elicit an immune response that the virus will not evade."

###

About the Journal

Human Gene Therapy, the Official Journal of the European Society of Gene and Cell Therapy, British Society for Gene and Cell Therapy, French Society of Cell and Gene Therapy, German Society of Gene Therapy, and five other gene therapy societies, is an authoritative peer-reviewed journal published monthly in print and online. Led by Editor-in-Chief Terence R. Flotte, MD, Celia and Isaac Haidak Professor of Medical Education and Dean, Provost, and Executive Deputy Chancellor, University of Massachusetts Medical School, Human Gene Therapy presents reports on the transfer and expression of genes in mammals, including humans. Related topics include improvements in vector development, delivery systems, and animal models, particularly in the areas of cancer, heart disease, viral disease, genetic disease, and neurological disease, as well as ethical, legal, and regulatory issues related to the gene transfer in humans. Its companion journals, Human Gene Therapy Methods, published bimonthly and focused on the application of gene therapy to product testing and development, and Human Gene Therapy Clinical Development, published quarterly, features data relevant to the regulatory review and commercial development of cell and gene therapy products. Tables of contents for all three publications and a free sample issue may be viewed on the Human Gene Therapy website.

About the Publisher

Mary Ann Liebert, Inc., publishers is a privately held, fully integrated media company known for establishing authoritative peer-reviewed journals in many promising areas of science and biomedical research, including Nucleic Acid Therapeutics, Tissue Engineering, Stem Cells and Development, and Cellular Reprogramming. Its biotechnology trade magazine, GEN (Genetic Engineering & Biotechnology News), was the first in its field and is today the industry's most widely read publication worldwide. A complete list of the firm's 80 journals, books, and newsmagazines is available on the Mary Ann Liebert, Inc., publishers website.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.