Public Release: 

Iron-rich lamellae in the semiconductor

HZDR researchers produce unusual crystal structure

Helmholtz-Zentrum Dresden-Rossendorf


IMAGE: By using lasers, scientists from Germany and Poland were able to create a remarkable compound of indium arsenide and iron. Surprisingly, the compound -- the black stripes in this image... view more 

Credit: HZDR / S. Zhou

There is often a pronounced symmetry when you look at the lattice of crystals: it doesn't matter where you look - the atoms are uniformly arranged in every direction. This behavior was also to be expected by a crystal, which physicists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR), the University of Warsaw and the Polish Academy of Sciences produced, using a special process: a compound from an indium arsenide semiconductor, spiked with some iron. The material, however, did not adhere to perfect symmetry. The iron formed two-dimensional, lamellar-shaped structures in the crystal that lent the material a striking property: it became magnetic. In the long term, the result could be vital in understanding superconductors.

"Using the possibilities of our Ion Beam Center, we fired fast iron ions at a crystal made of indium arsenide, a semiconductor made of indium and arsenic," says Dr. Shengqiang Zhou, physicist at the HZDR Institute of Ion Beam Physics and Materials Research. "The iron penetrated approximately one hundred nanometers deep into the crystal surface." The iron ions remained in the minority - they constituted only a few percent in the surface. The researchers then fired light pulses at the crystal using a laser. The flashes were ultra-short so that only the surface melted. "For much less than a microsecond, the top one hundred nanometers were a hot soup, whereas the crystal underneath remained cold and well ordered," Zhou says, describing the result.

The crystal surface cooled again just a blink of an eye after the laser bombardment. Something unusual had happened: the surface had essentially reverted back to the indium arsenide lattice structure. The cooling, however, was so rapid that the iron atoms did not have sufficient time to find and occupy a regular lattice state in the crystal. Instead, the metal atoms joined forces with their peers to form remarkable structures - small two-dimensional lamellae, arranged in parallel.

"It came as a surprise that the iron atoms were arranged in this manner," says Zhou. "We were thus able to create such a lamellar structure for the first time globally." When the experts examined the newly created material more closely, they determined that it had become magnetic due to the influence of iron. The researchers from Poland and Germany also managed to theoretically describe the process and simulate it on the computer. "The iron atoms arranged themselves into a lamellar structure because this was energetically the most favorable state they could take in the brief period of time," says Prof. Tomasz Dietl from the International Research Center MagTop at the Polish Academy of Sciences, summarizing the result of the calculations.

The result could be relevant in, for example, understanding superconductors - a class of materials that can conduct electricity entirely without loss. "Lamellae-like structures can also be found in many superconducting materials," explains Zhou. "Our compound could therefore serve as a model system and help in better understanding superconductor behavior." This could perhaps also serve to optimize their properties: in order for superconductors to work, they must currently be cooled to comparatively low temperatures of, for example, minus two hundred degrees Celsius. The aim of many experts is to increase these temperatures gradually - until they find a dream material, which loses its electrical resistance even at normal ambient temperatures.



Y. Yuan, R. Hübner, M. Birowska, C. Xu, M. Wang, S. Prucnal, R. Jakiela, K. Potzger, R. Böttger, S. Facsko, J.A. Majewski, M. Helm, M. Sawicki, S. Zhou, T. Dietl: Nematicity of correlated systems driven by anisotropic chemical phase separation, in Physical Review Materials, 2018 (DOI: 10.1103/PhysRevMaterials.2.114601)

_For more information contact:

Dr. Shengqiang Zhou
Institute of Ion Beam Physics and Materials Research
Phone: +49 351 260-2484 | Mail:

_Media contact:

Simon Schmitt | Science editor
Phone: +49 351 260-3400 | Mail:
Helmholtz-Zentrum Dresden-Rossendorf | Bautzner Landstr. 400 | 01328 Dresden / Germany |

The Helmholtz-Zentrum Dresden-Rossendorf (HZDR) performs - as an independent German research center - research in the fields of energy, health, and matter. We focus on answering the following questions:

* How can energy and resources be utilized in an efficient, safe, and sustainable way?

* How can malignant tumors be more precisely visualized, characterized, and more effectively treated?

* How do matter and materials behave under the influence of strong fields and in smallest dimensions?

To help answer these research questions, HZDR operates large-scale facilities, which are also used by visiting researchers: the Ion Beam Center, the High-Magnetic Field Laboratory Dresden, and the ELBE Center for High-Power Radiation Sources.

HZDR is a member of the Helmholtz Association and has five sites (Dresden, Freiberg, Grenoble, Leipzig, Schenefeld near Hamburg) with almost 1,200 members of staff, of whom about 500 are scientists, including 150 Ph.D. candidates.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.