News Release

Macroscopic phenomena governed by microscopic physics

Researchers at Osaka University observe magnetic reconnection found in the Sun and Earth's magnetosphere through experimentation with high power laser

Peer-Reviewed Publication

Osaka University

Imaging of Plasma Emission

image: Imaging of plasma emission shows the plasmoid and cusp-like features typical of magnetic reconnections. view more 

Credit: Osaka University

It has been difficult to simultaneously obtain micro- and macroscopic information in outer space. Global images of distant astrophysical phenomena provide macroscopic information; however, local information is inaccessible. In contrast, in situ observations with spacecrafts provide microscopic information of phenomena such as the Earth's magnetosphere, but it is difficult to obtain global information in near space.

In the so-called "laboratory astrophysics," a relatively new field born at Osaka University that has been adopted and developed all over the world, space and astrophysical phenomena are experimentally investigated.

A research group led by Yasuhiro Kuramitsu at Osaka University has revealed a magnetic reconnection driven by electron dynamics for the first time ever in laser-produced plasmas using the Gekko XII laser facility at the Institute of Laser Engineering, Osaka University. Magnetic reconnection is an essential factor in the universe, where the anti-parallel components of magnetic fields re-connect and release magnetic energy as plasma kinetic energy. Electron dynamics is considered to be essential in the triggering process of magnetic reconnection; however, it has been highly challenging to observe electron-scale, microscopic information together with the macroscopic reconnection structure in outer space.

The research group applied a weak magnetic field to the laser-produced plasma so that only electrons are directly coupled with the magnetic field. Plasma collimation was observed with interferometry only when the magnetic field was applied, i.e., the magnetic field was distorted by the plasma pressure and local anti-parallel. By further applying external pressure with an ambient plasma, a plasmoid associated with cusp-like features was observed through imaging of plasma emissions. The plasmoid propagated at the Alfvén velocity defined with electron mass, indicating the magnetic reconnection driven by electron dynamics.

The outcomes of this research will shed light on the role of electrons in laboratory plasmas. Since the spatio-temporal scales of electrons are much smaller than those of ions, it is highly challenging to resolve electron scale phenomena while imaging global structures of phenomena. This is also the case in outer space, as it has been difficult to obtain microscopic and macroscopic information simultaneously. In this study, the strength of the magnetic field is controlled to only allow electrons to couple with the magnetic field. This is a unique and powerful feature of laboratory experiment, and thus, laboratory astrophysics can be an alternative tool to investigate space and astrophysical phenomena. The roles of electron dynamics are essential not only to magnetic reconnection but also to various phenomena in the universe and in the laboratory, including fusion plasmas. Knowing more about the universe will lead to new technology in the future.

###

The article "Magnetic reconnection driven by electron dynamics" was published in Nature Communications at DOI: https://doi.org/10.1038/s41467-018-07415-3

About Osaka University

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and now has expanded to one of Japan's leading comprehensive universities. The University has now embarked on open research revolution from a position as Japan's most innovative university and among the most innovative institutions in the world according to Reuters 2015 Top 100 Innovative Universities and the Nature Index Innovation 2017. The university's ability to innovate from the stage of fundamental research through the creation of useful technology with economic impact stems from its broad disciplinary spectrum.

Website: https://resou.osaka-u.ac.jp/en/top


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.