Public Release: 

Pilot line project lnPulse launches to give Europe edge in integrated photonics

Eindhoven University of Technology


IMAGE: It will offer new-entrant companies direct access to state-of-the-art manufacturing of photonic integrated circuits (PICs) based on indium phosphide. This will enable the development of products for a wide range... view more 

Credit: Florian Lemaitre/Eindhoven University of Technology

16 European partners have started project InPulse in Eindhoven on 23 January. It will offer new-entrant companies direct access to state-of-the-art manufacturing of photonic integrated circuits (PICs) based on indium phosphide. This will enable the development of products for a wide range of new markets. The project is backed by 14 million Euros of funding from the European Commission. The pilot line will enable innovators to develop products fast, thus being able to focus on their products rather than the technologically complex task of fabrication.

Currently there are only a handful of companies that can develop PIC-enabled products. They do this with their own in-house fabs (production lines), and a consequence is that start-ups with promising ideas have trouble entering the market. The InPulse manufacturing pilot line therefore enables new entrants to take their concepts from prototype to pilot production on industry tools and processes. InPulse connects the design process to manufacturing, testing and packaging to streamline the development cycle for businesses who do not own a fabrication plant or have production knowledge.

The project partners of InPulse will create manufacturing-grade process design kits that will be the automated intermediary between the design, production and testing. The separation of design and fabrication process know-how enables newcomers to avoid the prohibitive investment overheads in PIC fabrication technology.

InPulse will use closely aligned methods that scale in volume and that focus on accelerating the design cycle, creating more accurate and predictable design tools, manufacturing and high-throughput testing.

The project builds on the pioneering work of the Joint European Platform for Photonic Integration of Components and Circuits (, which is already offering PIC prototyping services. InPulse enables the transition to manufacturing.

The first phase of work will focus on making the technology more robust and on putting in place the business processes for accelerated development programs. In the second stage of the project some thirty new products will be developed to demonstrate the pilot line capability. For this phase the project consortium is looking for additional companies and designers that want to take their ideas and designs to pre-production.

The project partners of InPulse are the Eindhoven University of Technology, AMIRES, Aarhus University, Bright Photonics, European Photonics Industry Consortium (EPIC), ficonTEC Service, Fraunhofer HHI, III-V Lab, Mellanox Technologies, Photon Design, Synopsys, Smart Photonics, Technobis Fibre Technologies, Tyndall National Institute, VLC Photonics and VPIphotonics.

The project is supported by the European Commission, the Photonics21 Public Private Partnership (PPP), and the PhotonDelta integrated photonics eco-system. InPulse builds on JePPIX technology. The European Commission has defined photonics as one of the six key enabling technologies of Europe.

Background information

Photonic integrated circuits (PICs) are microchips that use light (photons) as the workhorse, whereas microelectronics is based on electricity (electrons). The use of PICs offers unrivalled energy-efficiency, speed and precision, which opens the door to many fascinating new types of photonically enabled products for sensing, imaging and communicating as the technology matures and circuit performance advances.

Just like in microelectronics, the components on photonic chips are extremely small, and product realization requires a large range of meticulous, high-tech processing steps, subject to very strict conditions. This not only requires a large set of expensive equipment, but also a lot of skills. And, as the market requires product development to be fast, it all has to be tuned and organized such that the road from design to pre-production is short and reliable. InPulse addresses this will create these fast and reliable open-access manufacturing services.

Two months ago, a second Pilot Line (OIP4NWE) was launched to create a new generation of production tools, with support from the European Commission and PhotonDelta. Equipment developed in OIP4NWE may be expected to play a role in the later stages of InPulse. Both projects are led by Eindhoven University of Technology. InPulse is highly complementary, focusing on accelerating time to market and eco-system development.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.