Public Release: 

The FASEB Journal: Magnetic fields enhance bone remodeling

Magnetic fields shown to enhance bone remodeling in human stem cells and an animal model

Federation of American Societies for Experimental Biology

Since the creation of 3D-printed (3DP) porous titanium scaffolds in 2016, the scientific community has been exploring ways to improve their ability to stimulate osteogenesis, or bone remodeling. A recent study published in The FASEB Journal revealed the osteogenic potential of Static Magnetic Field (SMF) treatment for human bone-derived mesenchymal stem cells (hBMSCs) using 3DP scaffolds in vitro and in vivo.

"The reconstruction of large bone defects resulting from trauma, tumors, and infections remains a significant challenge for orthopedic surgeons," stated Hai Wang, PhD, a researcher within the Department of Orthopaedic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences. "When it comes to enhancing new bone formation, SMF presents a more feasible alternative to both bone grafts and pulsed electromagnetic fields."

A group of researchers used both hBMSCs and animal models to conduct the experiment. After seeding hBMSCs onto the surfaces of 3DP scaffolds, they divided the cells into four groups, designating the first as the control. They then exposed the remaining groups to magnetic field strengths of 50, 100, and 150 milliTesla (mT), respectively, and observed these cell cultures for 14 days. In this time, bone formation potential was significantly stronger among the SMF-treated cells than the control cells. Furthermore, the groups exposed to moderate levels of SMF (100 and 150 mT) demonstrated better osteogenic markers than the group exposed to 50 mT.

For the animal experiment, researchers used a rat model with a bone defect. After separating the rats into two groups, with the first as the control, the researchers exposed the second group to a moderate level (100 mT) of SMF. After 12 weeks, the researchers observed more new bone formation in the SMF-exposed rats than the control group.

"The long-known impact of magnetic fields in bone remodeling now receives this elegant advance, providing deep insights that may translate to major clinical advances," said Thoru Pederson, PhD, Editor-in-Chief of The FASEB Journal.

###

This research was supported by the Fundamental Research Funds for Central Public Welfare Research Institutes, Chinese Academy of Medical Sciences; the National High-Tech R&D Program of China; Youth Foundation of Peking Union Medical College Hospital; and Science and Technology Innovation Project of Medicine and Health, Chinese Academy of Medical Sciences.

The FASEB Journal is published by the Federation of the American Societies for Experimental Biology (FASEB). The world's most cited biology journal according to the Institute for Scientific Information, it has been recognized by the Special Libraries Association as one of the top 100 most influential biomedical journals of the past century. Receive monthly highlights for The FASEB Journal; subscribe at http://www.faseb.org/fjupdate.aspx.

FASEB is composed of 29 societies with more than 130,000 members, making it the largest coalition of biomedical research associations in the United States. Our mission is to advance health and well-being by promoting research and education in biological and biomedical sciences through collaborative advocacy and service to our societies and their members.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.