News Release

Colloidal gel properties under the microscope

Peer-Reviewed Publication

Institute of Industrial Science, The University of Tokyo

Tokyo, Japan - The term colloidal gel might not be one that is immediately familiar to everybody. However, most people come into contact with these materials every day. Many cosmetics, pharmaceuticals, food products and even building materials are made up of colloidal gels, and as a result these materials are widely studied. However, to date, research methods have not been capable of following the complete gelation process. Now, researchers at The University of Tokyo have used confocal microscopy to analyze the process in real time with single particle resolution. Their findings are published in Science Advances.

Colloidal gels consist of two phases that are intertwined with one another: a solid particle network and a liquid solvent. The result is soft-solid materials with unique properties, including elasticity and mechanical stability, which make them attractive choices for numerous applications. Although these properties have been capitalized upon commercially, they are not completely explained by the theoretical understanding that has been acquired to date.

"Studying colloidal gels that are already formed means that the actual process of gelation remains somewhat of a black box," one of study leading authors Hideyo Tsurusawa explains. Another leading author Mathieu Leocmach continues "By establishing a method that allows us to follow the kinetics of the complete gelation process, we have gained new insight into the origins of the characteristic properties of colloidal gels. Understanding the individual stages of gelation has enabled us to demonstrate a direct link between the mechanical stability of gels and isostatic structures."

Isostatic structures are particles or clusters that experience balanced forces. The researchers found that the point in the gelation process when solidity appears corresponds to the point of isotropic percolation of isostatic structures through the gel. Their comparison of the differences in percolation behavior between low and high concentration gels suggested that the space-spanning percolation of isostatic structures are directly linked to mechanical stability.

"The real time nature and resolution of our technique have resulted in a depth of understanding that was not previously achievable," study corresponding author Hajime Tanaka explains. "We hope that the enhanced insight will be useful for researchers working to address complex mechanical and rheological issues across the wide span of colloidal gel applications."

###

The article, "Direct link between mechanical stability in gels and percolation of isostatic particles" was published in Science Advances at DOI: 10.1126/sciadv.aav6090.

About Institute of Industrial Science (IIS), the University of Tokyo

Institute of Industrial Science (IIS), the University of Tokyo is one of the largest university-attached research institutes in Japan.

More than 120 research laboratories, each headed by a faculty member, comprise IIS, with more than 1,000 members including approximately 300 staff and 700 students actively engaged in education and research. Our activities cover almost all the areas of engineering disciplines. Since its foundation in 1949, IIS has worked to bridge the huge gaps that exist between academic disciplines and real-world applications.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.