News Release

Broken brain cells repaired in dementia mouse model

If translated to humans, results suggest new directions for combating cognitive decline in elderly

Peer-Reviewed Publication

Society for Neuroscience

Hippocampus & Entorhinal Cortex

image: Representative images of the hippocampus and Entorhinal cortex. view more 

Credit: Terreros-Roncal et al. JNeurosci (2019)

Dysfunctional neurons in the hippocampus of adult female mice modeling dementia can be repaired and reconnected to distant parts of the brain, reports a new study published in JNeurosci. The similarity between the mouse model and the human condition underscores the therapeutic potential of targeting these cells in dementia patients.

The hippocampus generates new brain cells throughout life and is implicated in neurodegenerative diseases. María Llorens-Martín and colleagues at the Centro de Biología Molecular "Severo Ochoa" (CBMSO, CSIC-UAM) used a mouse model of frontotemporal dementia to investigate the effects of the disease on dentate granule cells.

Compared to control subjects, the researchers observed strikingly similar alterations in newborn neurons from their mouse model and from human brain tissue of patients with frontotemporal dementia. In mice, chemically activating the cells and placing animals in a stimulating environment with running wheels and toys reversed the alterations and restore some of the connectivity disrupted by dementia. If translated to humans, these results suggest potential new directions for combating cognitive decline in the elderly.

###

Manuscript title: Activity-Dependent Reconnection of Adult-Born Dentate Granule Cells in a Mouse Model of Frontotemporal Dementia

Please contact media@sfn.org for full-text PDF and to join SfN's journals media list.

About JNeurosci

JNeurosci, the Society for Neuroscience's first journal, was launched in 1981 as a means to communicate the findings of the highest quality neuroscience research to the growing field. Today, the journal remains committed to publishing cutting-edge neuroscience that will have an immediate and lasting scientific impact, while responding to authors' changing publishing needs, representing breadth of the field and diversity in authorship.

About The Society for Neuroscience

The Society for Neuroscience is the world's largest organization of scientists and physicians devoted to understanding the brain and nervous system. The nonprofit organization, founded in 1969, now has nearly 37,000 members in more than 90 countries and over 130 chapters worldwide.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.