News Release

The fellowship of the wing: Pigeons flap faster to fly together

Peer-Reviewed Publication

PLOS

The Fellowship of the Wing: Pigeons Flap Faster to Fly Together

image: Flock of homing pigeons at the University of Oxford pigeon lofts. view more 

Credit: Lucy Taylor

New research publishing June 18 in the open-access journal, PLOS Biology, led by Dr Lucy Taylor from the University of Oxford's Department of Zoology now reveals that homing pigeons fit in one extra wingbeat per second when flying in pairs compared to flying solo.

Birds that fly in 'V'-formations, such as geese, are able to conserve energy by flying in aerodynamically optimal positions. By contrast, in species that don't fly in formation, such as homing pigeons, the costs and benefits of flocking have been less well understood.

The research indicates that flying with another bird requires more energy compared to flying solo. 'The results of this study were completely unexpected. Energy is the currency of life so it's astonishing that the birds are prepared to pay a substantial energetic cost to fly together," said lead-author, Dr Lucy Taylor.

The team used high frequency GPS and accelerometer bio-loggers to measure how pigeons changed their wingbeat patterns when flying in pairs compared to flying solo. The accelerometers act much like fitness trackers but, instead of measuring steps, the researchers measure wingbeats. 'The increase in wingbeat frequency is equivalent to Usain Bolt running the 100m sprint at his usual speed, whilst fitting in nearly one extra step per second. The pigeons are flapping faster when flying in pairs but hardly going any faster," said Dr Taylor.

The increase in wingbeat frequency is likely to be related to the demands of coordinating flight. Dr Taylor said: 'Imagine trying to coordinate with and avoid hitting another small object travelling at around 44 miles per hour. This is nearly two times faster than an Olympic sprinter, and the birds can move up and down as well as left and right. For a pigeon, flapping your wings faster will both give you faster reactions and greater control over your movements, and will help keep your head stable making it easier to track where the other bird is.'

Despite the costs of fitting in one additional wingbeat per second, the birds consistently chose to fly together, suggesting that they were able to gain other benefits from flocking. Birds flying in a pair were simultaneously able to improve their homing accuracy, meaning that they could conserve energy by flying shorter routes home. Combined with increased predator protection from safety in numbers, this research suggests that the overall benefits of flocking outweigh the immediate energetic costs of changing wingbeat patterns.

###

Peer-reviewed / Experimental Study / Animals

In your coverage please use this URL to provide access to the freely available article in PLOS Biology: http://journals.plos.org/plosbiology/article?id=10.1371/journal.pbio.3000299

Funding: L.A.T. and J.A.W. were funded by the Biotechnology and Biological Sciences Research Council (BBSRC) UK (grant number BB/J014427/1; https://bbsrc.ukri.org/). B.L. was funded by Engineering and Physical Sciences Research Council (EPSRC) UK (grant number EP/F500394/1; https://epsrc.ukri.org/). S.J.P. was supported by a Royal Society Research Grant (R10952). This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No. 682501). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.