News Release

Scientists take step toward more efficient fuel refinement processes

Peer-Reviewed Publication

Chinese Academy of Sciences Headquarters

Engineering An Enzyme

image: Engineering an enzyme that would uniformly speed along the small alkanes reaction to hydroxyl groups needed to produce fuel. view more 

Credit: CONG Zhiqi, Qingdao Institute of Bioenergy and Bioprocesses Technology, CAS

Researchers at the Qingdao Institute of Bioenergy and Bioprocesses Technology (QIBEBT) in China have made headway toward more sustainable and economic fuel production by developing a biochemical approach to allow more control over the conversion of natural gas into potable liquid fuel.

The study appeared on July 15 in ACS Catalysis, a journal published by the American Chemical Society.

"The bioconversion of natural gas into liquid fuel has attracted much attention as a promising approach in recent years," said CONG Zhiqi, an author on the paper. "However, the selective hydroxylation of methane -- the main component of natural gas -- has been one of the major challenges for the scientific community." CONG is a professor in the Chinese Academy of Sciences Key Laboratory of Biofuels and the Shandong Provincial Key Laboratory of Synthetic Biology in the Qingdao Institute of Bioenergy and Bioprocesses Technology.

Methane and propane, another component of natural gas, are organic molecules called alkanes. Consisting solely of carbon and hydrogen atoms, alkanes need to be significantly processed before they can be used in fuel. The process includes introducing oxygen and hydrogen, called hydroxyl groups, into the alkane. The atoms rearrange themselves, producing an alcohol that can be used as fuel, such as ethanol.

The process is indirect due to how selective alkanes are when reacting to the hydroxyl catalysts. Researchers have worked on engineering an enzyme that would uniformly speed along the small alkanes reaction to hydroxyl groups needed to produce fuel.

According to Cong, this has been a long-standing issue because of the inability to directly hydroxylate small alkanes. With current processing, some alkanes are too reactive and renders the resulting fuel useless.

In an effort to control which alkanes react and to what degree, CONG and his team focused on several protein variants of P450 monooxygenase, which help the process of introducing hydroxyl groups into alkane molecules. There are more than 41,000 variants of the enzyme, all of which can cause different levels of reaction.

The researchers achieved controllable selective hydroxylation of propane through what CONG calls an artificial P450 system driven by hydrogen peroxide. The system consists of a dual-function small molecule (DFSM), hydrogen peroxide and variants of an engineered P450 enzyme called P450BM3. The engineered P45BM3 is primed to react to the hydrogen peroxide, and the DFSM holds the enzyme and hydrogen peroxide together, allowing the reaction to occur.

The reaction continues over to the propane, successfully converting the alkanes into alcohols that can be turned into fuel. They found the system had comparable or better catalytic properties than the only known peroxide-dependent natural enzyme of small alkanes, depending on which variant of P450BM3 they used.

In engineering the variants, the researchers replaced the substrates on the part of the enzyme that bonds with the hydrogen peroxide with more reactive versions. This helped otherwise inert carbon bonds break apart and bond with other available atoms.

"This study gave the first example of direct small alkane hydroxylation by the peroxide-driven P450BM3 variants. This substantially expands the synthetic toolbox toward the development of a practical catalyst for fuel processing," CONG said.

The researchers are now researching the specific molecular mechanisms of the reactions, and plan to use that information to develop similar systems for use with other natural gas components, such as methane.

"We hope we can further tune the enzyme for use in methane oxidation, as well," CONG said.

###

Other contributors from the Chinese Academy of Sciences Key Laboratory of Biofuels and the Shandong Provincial Key Laboratory of Synthetic Biology in the Qingdao Institute of Bioenergy and Bioprocesses Technology include CHEN Jie, KONG Fanhui, MA Nana, ZHAO Panxia, LIU Chuanfei and WANG Xiling. CONG, CHEN, MA and ZHAO are also affiliated with the University of Chinese Academy of Sciences.

This work was supported by the National Natural Science Foundation of China, the Qingdao Innovative Leading Talent Project Grant, and the Director Innovation Fund of Key Laboratory of Biofuels of the Chinese Academy of Sciences.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.