News Release 

Tuning the energy levels of organic semiconductors

Technische Universität Dresden

A diverse set of experiments supported by simulations were able to rationalize the effect of specific electrostatic forces exerted by the molecular building blocks on charge carriers. The study was published recently in Nature Communications.

In electronic devices based on organic semiconductors such as solar cells, light-emitting diodes, photodetectors or transistors, electronic excitations and charge transport levels are important concepts to describe their operation principles and performances. The corresponding energetics, however, are more difficult to access and to tune than in conventional inorganic semiconductors like silicon chips, which stands as a general challenge. This applies both to the measurement and to the controlled influence from outside.

One tuning knob exploits the long-range Coulomb interactions, which is enhanced in organic materials. In the present study, the dependence of the energies of charge transport levels and of excitonic states on blend composition and molecular orientation in the organic material is explored. Excitons are bound pairs of an electron and a hole that are formed in the semiconductor material by light absorption. Scientists refer to blend composition when the components consist of different organic semiconducting materials. The findings demonstrate that the energetics in organic films can be tuned by adjusting a single molecular parameter, namely the molecular quadrupole moment in the pi-stacking direction of the molecules. An electric quadrupole can consist of two positive and two equally strong negative charges which form two oppositely equal dipoles. In the simplest case, the four charges are alternately arranged at the corners of a square.

The authors further link device parameters of organic solar cells such as the photovoltage or the photocurrent to this quadrupole moment. The results help to explain recent breakthroughs of device efficiency in organic solar cells, which are based on a new class of organic materials. As the observed electrostatic effect is a general property of organic materials, including so-called "small molecules" and polymers, it can help to improve the performance of all types of organic devices.

###

Paper title: "Impact of molecular quadrupole moments on the energy levels at organic heterojunctions" (Nature Communications)
Web: https://www.nature.com/articles/s41467-019-10435-2
DOI: 10.1038/s41467-019-10435-2
Authors: M. Schwarze, K. S. Schellhammer, K. Ortstein, J. Benduhn, C. Gaul, A. Hinderhofer, L. Perdigón Toro, R. Scholz, J. Kublitski, S. Roland, M. Lau, C. Poelking, D. Andrienko, G. Cuniberti, F. Schreiber, D. Neher, K. Vandewal, F. Ortmann, Karl Leo

About the Computational Nanoelectronics Group:

The research group at the Center for Advancing Electronics Dresden (cfaed) headed by Dr. Frank Ortmann investigates electronic properties and charge transport properties of novel semiconductor materials. Here, organic semiconductors are currently an important focus of the work, which is funded by the German Research Foundation under the Emmy Noether Program. The group has been based at the cfaed since 2017. Info: https://cfaed.tu-dresden.de/ortmann-home

Media inquiries:

Prof. Karl Leo
Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP)
TU Dresden
E-Mail: karl.leo@iapp.de

Dr. Frank Ortmann
Center for Advancing Electronics Dresden (cfaed)
Technische Universität Dresden
Tel.: +49 351 463-43260
E-Mail: frank.ortmann@tu-dresden.de

Matthias Hahndorf
Center for Advancing Electronics Dresden (cfaed)
Technische Universität Dresden
Head of Communications
Tel.: +49 351 463-42847
E-mail: matthias.hahndorf@tu-dresden.de

cfaed

cfaed is a microelectronics research cluster funded by the German Excellence Initiative. It comprises 11 cooperating institutes in Saxony, host university is the Technische Universität Dresden (TUD). About 300 scientists from more than 20 countries investigate new technologies for electronic information processing. These technologies are inspired by innovative materials such as silicon nanowires, carbon nanotubes or polymers or based on completely new concepts such as the chemical chip or circuit fabrication methods by self-assembling structures such as DNA-Origami. The orchestration of these new devices into heterogeneous information processing systems with focus on their resilience and energy-efficiency is also part of cfaed's research program which comprises nine different research paths.

http://www.cfaed.tu-dresden.de

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.