News Release 

How deep space travel could affect the brain

Radiation exposure impairs learning and memory, causes anxiety

Society for Neuroscience

IMAGE

IMAGE: Radiation exposure alters the electrophysiological properties of neurons in the hippocampus. view more 

Credit: Acharya et al., eNeuro 2019

Exposure to chronic, low dose radiation -- the conditions present in deep space -- causes neural and behavioral impairments in mice, researchers report in eNeuro. These results highlight the pressing need to develop safety measures to protect the brain from radiation during deep space missions as astronauts prepare to travel to Mars.

Radiation is known to disrupt signaling among other processes in the brain. However, previous experiments used short-term, higher dose-rate exposures of radiation, which does not accurately reflect the conditions in space.

To investigate how deep space travel could affect the nervous system, Charles Limoli and colleagues at the University of California, Irvine, Stanford University, Colorado State University and the Eastern Virginia School of Medicine exposed mice to chronic, low dose radiation for six months. They found that the radiation exposure impaired cellular signaling in the hippocampus and prefrontal cortex, resulting in learning and memory impairments. They also observed increased anxiety behaviors, indicating that the radiation also impacted the amygdala.

The researchers predict that during a deep space mission approximately one in five astronauts would experience anxiety-like behavior and one in three would experience certain levels of memory impairments. Additionally, the astronauts may struggle with decision-making.

###

Manuscript title: New Concerns for Neurocognitive Function During Deep Space Exposures to Chronic, Low Dose Rate, Neutron Radiation

Please contact media@sfn.org for full-text PDF and to join SfN's journals media list.

About eNeuro

eNeuro, the Society for Neuroscience's open-access journal launched in 2014, publishes rigorous neuroscience research with double-blind peer review that masks the identity of both the authors and reviewers, minimizing the potential for implicit biases. eNeuro is distinguished by a broader scope and balanced perspective achieved by publishing negative results, failure to replicate or replication studies. New research, computational neuroscience, theories and methods are also published.

About The Society for Neuroscience

The Society for Neuroscience is the world's largest organization of scientists and physicians devoted to understanding the brain and nervous system. The nonprofit organization, founded in 1969, now has nearly 37,000 members in more than 90 countries and over 130 chapters worldwide.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.