News Release 

RUDN University mathematician first described the movement in a flat strip of plasma

RUDN University

IMAGE

IMAGE: RUDN University mathematician for the first time proved the theorem of existence and uniqueness of solutions of the Zakharov-Kuznetsov equation in a strip. view more 

Credit: ©RUDN (you are free to use the picture with appropriate credits)

RUDN University mathematician for the first time proved the theorem of existence and uniqueness of solutions of the Zakharov-Kuznetsov equation in a strip. Such theorems are very rare for partial differential equations. The new results can be applied, for instance, in astrophysics, in describing the propagation of plane waves in plasma. The article is published in the journal Nonlinear Analysis: Real World Applications.

The Zakharov-Kuznetsov equation is a one-function equation of two variables x andy. For physics, x is the direction of wave propagation, and the deformation of the medium occurs along the perpendicular direction y. For example, an oscillation of the guitar string looks like the wave runs down the string, while the oscillations occur perpendicular direction relative to the run of the wave.

There are a large number of results that describe solutions of the Zakharov-Kuznetsovequations in the case when there are no constraints on y. But the question of wave propagation in the strip -- when y is limited -- was almost not studied until recently. And this is although such a statement of the problem has a physical meaning, and therefore potential applications.

RUDN University mathematicians dealt with the Zakharov-Kuznetsov equation in the strip. They examined three main cases -- when there are no oscillations on the boundary of the strip, when there is no current on the same boundary and when the boundary conditions are periodic in structure. The latter case corresponds to the propagation of waves in a medium whose structure is periodic in x.

In all these cases mathematicians managed to prove theorems of existence and uniqueness of solutions. For systems of partial differential equations, which include the Zakharov-Kuznetsov equation, such equations are very rare. These results are the first for solutions of the equation with initial conditions in the strip. Flat plasma flows with boundary conditions, which were considered by RUDNUniversity scientists, can occur in physics and astrophysics.

The Zakharov-Kuznetsov equations belong to a wider category of equations known the Korteweg-de Vries equations. In the study of this category of equations for the first time, it was possible to describe solitons -- waves whose shape does not change during movement. Physicists consider solitons as a tool for modern optical data transmission systems. The study of solitons, which can arise in the Zakharov-Kuznetsov equations, is one of the options for the development of the work done byRUDN University mathematicians.

###

Article: Regular solutions to initial-boundary value problems in a half-strip for two-dimensional Zakharov-Kuznetsov equation
Nonlinear Analysis: Real World Applications
Volume 51, February 2020,102959
DOI:/10.1016/j.nonrwa.2019.06.009https://www.sciencedirect.com/science/article/pii/S1468121819300240?via%3Dihub
Research area: Mathematics
RUDN University

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.