News Release 

Ingestible sensor allows patients to be independent but still supported during TB treatment

100% of patients in US, trial were cured and preferred the new technology with the potential to revolutionize the treatment and cure of tuberculosis, the world's biggest infectious disease killer

Specialists in Global Health

IMAGE

IMAGE: This is the logo for Specialists in Global Health. view more 

Credit: Specialists in Global Health

Friday, 4th October, 2019 (San Diego, U.S.) --A trial involving an edible sensor connected to a paired mobile, that enables medical staff to remotely see patients` intake of tuberculosis (TB) medicine, has produced superior results to directly observed therapy (DOT), where a healthcare worker watches the patient swallow medication, leading researchers to suggest that the technology could be a game changer in high prevalence countries where treatment adherence remains a stumbling block to eliminating TB.

The randomised controlled trial, conducted in California, was published today in PLOS Medicine ahead of the 50th Union World Conference on Lung Health be held in Hyderabad, India, October 30-November 2,2019

Today TB is the world´s largest infectious disease killer, despite it being preventable, treatable and curable. In 2017, 10 million people globally fell ill with TB and 1.6 million died from the disease. India has the highest TB burden in the world with 1 in 4 people affected by the disease residing in the country.

The trial demonstrates that Wirelessly Observed Therapy (WOT) was reported as highly accurate in recording medication ingestion (99.3 per cent) and persons with active TB using WOT were confirmed as taking 93 per cent of their daily prescribed doses as opposed to 63 per cent using DOT. All the patients using WOT completed treatment, were cured, and preferred it to DOT. The system allowed patients to manage their own medication taking, preserving patient privacy and autonomy, but also enabled highly targeted treatment support from practitioners with permission.

Poor adherence to TB treatment has long been associated with continued transmission, increased unfavorable treatment outcomes including relapse, and the emergence of drug-resistant TB.

"We are not doing people affected by TB justice when we have robust genomic diagnostic tests and the emergence of new antibiotic drugs that can cure TB but cannot guarantee consistent, convenient and private treatment support for them. " said Sara Browne, Professor of Clinical Medicine in the Division of Infectious Diseases & Global Public Health at the University of California, who led the trial.

"If we are serious about eliminating TB then we have to get some fundamental things right such as increased support for patient care that efficiently helps patients complete all of their treatment," concluded Browne, who is also the founder of Specialists in Global Health (SIGH), a non-profit that provided funding for Bi-national participants in this trial.

The trial evaluated a novel technology termed Wirelessly Observed Therapy (WOT) consisting of an ingestion sensor composed of minerals, a patch worn on the torso and a paired a mobile device. WOT is FDA approved and can be accessed by patients with a physicians prescription and downloadable App. It determined the accuracy of ingestion detection in clinical and home settings using WOT and subsequently compared, in a randomized control trial (RCT), confirmed daily adherence to medication in persons using WOT or directly observed therapy (DOT) during TB treatment.

The trial evaluated WOT in 77 participants with drug-susceptible TB in the continuation phase of treatment recruited from San Diego (SD) and Orange County (OC) Divisions of TB Control and Refugee Health, using ingestion sensor-enabled combination isoniazid 150 mg/rifampin 300 mg (IS-Rifamate) prescribed daily. In terms of accuracy, WOT was equivalent to DOT. WOT was superior to DOT in supporting confirmed daily adherence to TB medications during the continuation phase of TB treatment and was overwhelmingly preferred by participants.

"We are now moving into an era of all-oral regimens for the treatment of drug resistant TB, without the need for daily injections. And we now have an opportunity to explore the potential of medication adherence support using WOT in the use of TB treatment regimes worldwide," said Dr. Constance Benson, Professor of Medicine in the Division of Infectious Disease & Global Public Health at the University of California and co-lead on the trial.

"We have a limited number of drugs available for the drug-resistant strains of TB and better treatment support will be essential to help ensure that the integrity of those drugs is preserved in the long term," concluded Benson.

Dr. Mark Cotton, Distinguished Professor of Pediatrics and Child Health at Stellenbosch University and Tygerberg Children's Hospital in Cape Town South Africa, is an advocate of evaluating WOT in TB treatment.

"We must urgently evaluate the applicability of WOT in high prevalence countries such as India and South Africa where treatment adherence rates are often poor due to geographical barriers, stigma and poverty," said Cotton. "WOT could potentially be a lifesaver for millions."

###

Further Information:

Michael Kessler
Michael Kessler Media
Cell+ 34 655 792 699
Email: michael.kessler@intoon-media.com

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.