News Release

New procedure for obtaining a cheap ultra-hard material that is resistant to radioactivity

Boron carbide is used in the design of planes, trains and cars

Peer-Reviewed Publication

University of Seville

Sample

image: Sample of the new material. view more 

Credit: Universidad de Sevilla

University of Seville researchers, led by the professor Francisco Luis Cumbrera, together with colleagues from the University of Zaragoza and CSIC, have found a procedure for producing the phase B6C of boron carbide. This phase had been described from a theoretical point of view, but obtaining it and describing its character were a task that remained unfulfilled. This scientific-technological advance will make it possible to provide a cheap, ultra-resistant material for the design of planes, cars and other means of transport. In addition, B6C is also ultra-resistant to radioactivity.

BxC is a family of ceramic materials known as "boron carbide". The "official" or canonical member (in scientific language, stoichiometric) is B4C. This is a very hard black solid, which remains stable at very high temperatures. The family is big: from B4C to B14C. Depending on the proportion of B (boron) and C (carbon), its physical properties change. B6C is the member of the family (phase B6C) with 6 boron atoms to each one of carbon and theoretically it had been deemed that it would be ultra-resistant. Until now, a way to produce it systematically had not been found, nor how to distribute the boron and carbon atoms internally.

The material has been made using the technique of laser zone floating, which consists of fusion by means of the application of intense laser radiation and then rapid solidification. Such an idea was proposed by Bibi Malmal Moshtaghion, a researcher trained in Iran and in Seville with a Juan de la Cierva contract to work at the University of Zaragoza. Professor Cumbrera's team has used X-ray diffraction techniques to characterise the crystallography of the samples obtained and the defects present in them, as well as the possible preferential ordering of the polycrystal grains. Later, its mechanical properties were determined by both teams. The phase B6C obtained in this way possess a hardness of 52 GPa and a Young modulus of 600 GPa. In comparison, the hardness of diamond is around 45 GPa, although it has a Young modulus of 1050 GPa. "This make phase B6C the hardest material in nature after diamond and the cubic phase of boron nitride", the researchers state.

###


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.