News Release 

Lifting weights makes your nervous system stronger, too

The first few weeks of weightlifting strengthen the reticulospinal tract, not muscles

Society for Neuroscience

IMAGE

IMAGE: The weight training setup (left) and the weight progression for each monkey (right). view more 

Credit: Glover and Baker, JNeurosci 2020

Gym-goers may get frustrated when they don't see results from weightlifting right away, but their efforts are not in vain: the first few weeks of training strengthen the nervous system, not muscles. New research published in JNeurosci reveals how.

The brain orchestrates movement via two major neural highways descending to the spinal cord: the corticospinal tract (CST) and reticulospinal tract (RST). The CST is thought to be the dominant pathway, with the RST controlling posture. However, the CST does not change during strength training, so increased strength must stem from the more primitive RST.

Glover and Baker trained monkeys to pull a weighted handle using one arm, with the weight gradually increasing over twelve weeks. Each day, the scientists stimulated the motor cortex and the two motor tracts, measuring the resulting electrical activity in the arm muscles. Over the course of the training regimen, the electrical response from stimulating the cortex and RST increased -- a sign of strengthened signaling. After three more months of strength training, stimulating the RST elicited a greater response in the side of the spinal cord connected to the trained arm. Outputs from the reticulospinal tract become more powerful during weight training and could be the driving force behind increases in strength.

###

Manuscript title: Cortical, Corticospinal and Reticulospinal Contributions to Strength Training

Please contact media@sfn.org for full-text PDF and to join SfN's journals media list.

About JNeurosci

JNeurosci, the Society for Neuroscience's first journal, was launched in 1981 as a means to communicate the findings of the highest quality neuroscience research to the growing field. Today, the journal remains committed to publishing cutting-edge neuroscience that will have an immediate and lasting scientific impact, while responding to authors' changing publishing needs, representing breadth of the field and diversity in authorship.

About The Society for Neuroscience

The Society for Neuroscience is the world's largest organization of scientists and physicians devoted to understanding the brain and nervous system. The nonprofit organization, founded in 1969, now has nearly 37,000 members in more than 90 countries and over 130 chapters worldwide.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.