News Release 

Exploring how a scorpion toxin might help treat heart attacks

American Chemical Society

Scientists are discovering potential life-saving medicines from an unlikely source: the venom of creatures like snakes, spiders and scorpions. Scorpion venom, in particular, contains a peptide that has beneficial effects on the cardiovascular system of rats with high blood pressure. Now, researchers reporting in ACS' Journal of Proteome Research say they know a little more about how that happens.

Scorpion venom is a complex mixture of biologically active molecules, including neurotoxins, vasodilators and antimicrobial compounds, among many others. Although the venom is painful for those unlucky enough to be stung by a scorpion, individual venom compounds, if isolated and administered at the proper dose, could have surprising health benefits. One promising compound is the tripeptide KPP (Lys-Pro-Pro), which is a piece of a larger scorpion toxin. KPP was shown to cause blood vessels to dilate and blood pressure to decline in hypertensive rats. Thiago Verano-Braga, Adriano Pimenta and colleagues wanted to find out what exactly KPP does to heart muscle cells. The answer could explain the peptide's beneficial effects.

The researchers treated mouse cardiac muscle cells in a petri dish with KPP and measured the levels of proteins expressed by the cells at different times using mass spectrometry. They found that KPP regulated proteins associated with cell death, energy production, muscle contraction and protein turnover. In addition, the scorpion peptide triggered the phosphorylation of a mouse protein called AKT, which activated it and another protein involved in the production of nitric oxide, a vasodilator. KPP treatment, however, caused dephosphorylation of a protein called phospholamban, leading to reduced contraction of cardiac muscle cells. Both AKT and phospholamban are already known to protect cardiac tissue from injuries caused by lack of oxygen. These results suggest that KPP should be further investigated as a drug lead for heart attacks and other cardiovascular problems, the researchers say.

###

The authors acknowledge funding from the Brazilian National Council for Scientific and Technological Development, the Minas Gerais State Research Support Foundation and the Brazilian Coordination for the Improvement of Higher Education Personnel.

The abstract that accompanies this paper can be viewed here.

The American Chemical Society (ACS) is a nonprofit organization chartered by the U.S. Congress. ACS' mission is to advance the broader chemistry enterprise and its practitioners for the benefit of Earth and its people. The Society is a global leader in providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, eBooks and weekly news periodical Chemical & Engineering News. ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a specialist in scientific information solutions (including SciFinder® and STN®), its CAS division powers global research, discovery and innovation. ACS' main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Follow us: Twitter | Facebook

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.