News Release 

Disparities in a common air pollutant are visible from space

American Chemical Society

As a global center for petrochemical manufacturing, Houston, Texas, experiences some of the worst air quality in the country, according to the U.S. Environmental Protection Agency. Evidence suggests that air pollution disproportionately affects low-income, non-white and Hispanic residents, but it's difficult to directly observe differences in pollutants between neighborhoods. Now, researchers reporting in Environmental Science & Technology have used airplanes and a satellite to uncover disparities in nitrogen dioxide amounts in the atmosphere above Houston.

Nitrogen dioxide, a precursor to ground-level ozone and particulate matter, is produced mainly by vehicles and power plants. In Houston, petrochemical refineries and industrial activities also emit this pollutant, which has been linked to respiratory problems. Ground-based nitrogen dioxide monitors and low-resolution satellite observations have historically had limited abilities to capture differences among neighborhoods of the same city. Angelique Demetillo, Sally Pusede and colleagues wanted to use a new high-spatial-resolution dataset from a NASA spectrometer onboard an airplane to investigate neighborhood-level differences in nitrogen dioxide within Houston, and to see whether these differences correlated with race-ethnicity and income of the neighborhoods. They also wanted to use these airborne data to evaluate whether the recently launched, space-based TROPOspheric Monitoring Instrument (TROPOMI) could resolve similar between-neighborhood differences.

The researchers used the NASA airborne spectrometer data to examine differences in population-weighted nitrogen dioxide levels for different census tracts. The areas where the pollutant was highest were where more low-income, non-white and Hispanic people lived. In contrast, where the pollutant was lowest, high-income, white people tended to live there. Most of the disparities could be explained by proximity of the neighborhoods to industrial sources and heavy-duty diesel vehicles. The researchers then used the observations from TROPOMI in a similar analysis, demonstrating that these new space-based measurements could also detect pollution inequalities within Houston. While the aircraft measurements can be collected over one-month periods, the TROPOMI observations are made almost daily and have the potential to be useful to decision-makers as they allocate resources for reducing air pollution, propose emission requirements and invest in public transportation, the researchers say.

###

The authors acknowledge funding from the University of Virginia Office for Sustainability, a University of Virginia Data Sciences Institute Presidential Fellowship, a Virginia Space Grant Consortium Graduate Research Fellowship, a Future Investigator in NASA Earth and Space Science and Technology award and a University of Virginia Department of Environmental Sciences Hart Family Undergraduate Research Fellowship.

The paper's abstract will be available on August 5 at 8 a.m. Eastern time here: http://pubs.acs.org/doi/abs/10.1021/acs.est.0c01864

The American Chemical Society (ACS) is a nonprofit organization chartered by the U.S. Congress. ACS' mission is to advance the broader chemistry enterprise and its practitioners for the benefit of Earth and its people. The Society is a global leader in providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, eBooks and weekly news periodical Chemical & Engineering News. ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a specialist in scientific information solutions (including SciFinder® and STN®), its CAS division powers global research, discovery and innovation. ACS' main offices are in Washington, D.C., and Columbus, Ohio.

ACS encourages journalists to apply for press credentials for the ACS Fall 2020 Virtual Meeting & Expo by contacting newsroom@acs.org.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Follow us: Twitter | Facebook

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.