News Release 

Fish oil without the fishy smell or taste

Sustainable processing delivers highest quality, minimizing odor and taste, says UC researcher

University of Cincinnati

Research News


IMAGE: Harshita Kumari, PhD, is an associate professor of pharmaceutical sciences at the University of Cincinnati's James L. Winkle College of Pharmacy. Her work in the area of solution chemistry of... view more 

Credit: University of Cincinnati

A new study, co-led by University of Cincinnati researchers, describes the development of a refining process that scientists deem a superior method to help produce better dietary omega-3 health and dietary supplements containing fish oil.

Fish oil is widely known to be an excellent dietary source of omega-3 polyunsaturated fatty acids (PUFAs) having positive effects on human health including heart and eye health, inflammation and bone density.

The novel process uses a new tool called a vortex fluidic device (VFD) developed by research collaborators at Flinders University of Australia. The process is successful in lifting the quality of active ingredients of the PUFAs in fish oil, says Harshita Kumari, the study's co-author and associate professor of pharmaceutical sciences at UC's James L. Winkle College of Pharmacy.

The study now appears in Nature Papers Journals Science of Food.

Researchers applied the VFD-mediated encapsulated fish oil to enrich the omega-3 fatty acid content of apple juice.

"This novel process enriches the omega-3 fatty acid content of apple juice remarkably without changing its taste," says Kumari, adding that two common consumer complaints regarding fish oil supplements is the taste and odor. Liquid omega-3 oils can also break down over time when exposed to oxygen which leads to degradation.

Compared to regular homogenization processing, Kumari says the device can raise PUFA levels and purity by lowering oxidation and dramatically improving shelf life. Natural bioactive molecules, also used in processing, reveal that the fish oil medium can absorb flavonoids and other health supplements.


In addition, Kumari and other researchers, including her UC doctoral student Marzieh Mirzamani, developed a technique for studying how this process occurs in the VFD in real time through small-angle neutron scattering.

Research endeavors such as this are an example of UC's innovation agenda, an integral element of Next Lives Here, the University of Cincinnati's strategic direction.

The study was published in partnership with Guangzhou University, the University of Cincinnati, Flinders University and the Australian Nuclear Science and Technology Organisation (ANSTO).

The project received funding from the Australian Research Council and was supported by ANSTO and the University of Cincinnati.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.