News Release 

Patterning method could pave the way for new fiber-based devices, smart textiles

American Chemical Society

Research News

Multimaterial fibers that integrate metal, glass and semiconductors could be useful for applications such as biomedicine, smart textiles and robotics. But because the fibers are composed of the same materials along their lengths, it is difficult to position functional elements, such as electrodes or sensors, at specific locations. Now, researchers reporting in ACS Central Science have developed a method to pattern hundreds-of-meters-long multimaterial fibers with embedded functional elements.

Youngbin Lee, Polina Anikeeva and colleagues developed a thiol-epoxy/thiol-ene polymer that could be combined with other materials, heated and drawn from a macroscale model into fibers that were coated with the polymer. When exposed to ultraviolet light, the polymer, which is photosensitive, crosslinked into a network that was insoluble to common solvents, such as acetone. By placing "masks" at specific locations along the fiber in a process known as photolithography, the researchers could protect the underlying areas from UV light. Then, they removed the masks and treated the fiber with acetone. The polymer in the areas that had been covered dissolved to expose the underlying materials. As a proof of concept, the researchers made patterns along fibers that exposed an electrically conducting filament underneath the thiol-epoxy/thiol-ene coating. The remaining polymer acted as an insulator along the length of the fiber. In this way, electrodes or other microdevices could be placed in customizable patterns along multimaterial fibers, the researchers say.

###

The authors acknowledge funding from the National Science Foundation, the National Institute of Neurological Disorders and Stroke, and the Kwanjeong Educational Foundation.

The paper's abstract will be available on November 25 at 8 a.m. Eastern time here:
http://pubs.acs.org/doi/abs/10.1021/acscentsci.0c01188

The American Chemical Society (ACS) is a nonprofit organization chartered by the U.S. Congress. ACS' mission is to advance the broader chemistry enterprise and its practitioners for the benefit of Earth and its people. The Society is a global leader in providing access to chemistry-related information and research through its multiple research solutions, peer-reviewed journals, scientific conferences, eBooks and weekly news periodical Chemical & Engineering News. ACS journals are among the most cited, most trusted and most read within the scientific literature; however, ACS itself does not conduct chemical research. As a specialist in scientific information solutions (including SciFinder® and STN®), its CAS division powers global research, discovery and innovation. ACS' main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive news releases from the American Chemical Society, contact newsroom@acs.org.

Follow us:
Twitter | Facebook

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.