News Release 

Scientists identify workflow algorithm to predict psychosis

Cleverly combining artificial and human intelligence leads to improved prevention of psychosis in young patients

Max-Planck-Gesellschaft

Research News

IMAGE

IMAGE: Artificial intelligence may help predict psychosis in young patients with clinical high-risk syndromes or recent-onset depression. view more 

Credit: Gerd Altmann

Scientists from the Max Planck Institute of Psychiatry, led by Nikolaos Koutsouleris, combined psychiatric assessments with machine-learning models that analyse clinical and biological data. Although psychiatrists make very accurate predictions about positive disease outcomes, they might underestimate the frequency of adverse cases that lead to relapses. The algorithmic pattern recognition helps physicians to better predict the course of disease.

The results of the study show that it is the combination of artificial and human intelligence that optimizes the prediction of mental illness. "This algorithm enables us to improve the prevention of psychosis, especially in young patients at high risk or with emerging depression, and to intervene in a more targeted and well-timed manner" explains Koutsouleris.

The algorithm does not replace treatment by medical professionals; rather, it assists decision making and provides recommendations as to whether to conduct further examinations on an individual basis. Using the algorithm, practitioners can identify at an early stage the patients that need therapeutic intervention and those who do not. "The results of our study could help drive a reciprocal and interactive process of clinical validation and improve prognostic tools in real-world screening services," Koutsouleris summarizes.

###

Original publication

Nikolaos Koutsouleris; Dominic B. Dwyer; Franziska Degenhardt; et al
Multimodal Machine Learning Workflows for Prediction of Psychosis in Patients With Clinical High-Risk Syndromes and Recent-Onset Depression
JAMA Psychiatry
Published online December 2, 2020.

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.