News Release 

Researchers discover how a bio-pesticide works against spider mites

Tokyo University of Agriculture and Technology

Research News

Scientists have uncovered why a food-ingredient-based pesticide made from safflower and cottonseed oils is effective against two-spotted spider mites that attack over a thousand species of plants while sparing the mites' natural predators.

An international team of scientists has uncovered how a bio-pesticide works against spider mites while sparing their natural predators.

The findings, published in the journal Engineering in Life Sciences on October 7, 2020, could present farmers and gardeners with an eco-friendly alternative to synthetic pesticides.

Food ingredients have long been used as alternative pesticides against arthropod pests, such as insects, ticks, and mites, because they tend to be less toxic to mammals and pose less impact to the environment. The way bio-pesticides work - often through physical properties instead of chemical ones - also reduces the likelihood that the targeted pest will develop resistance to the pesticide, in turn reducing the need to use greater quantities of the pesticide or develop new ones.

One such bio-pesticide, made from safflower and cottonseed oils--which takes the brand name Suffoil--has been known to be effective against two-spotted spider mites (Tetranychus urticae), a species of arachnid that attacks more than 1,100 species of plants. Suffoil has no effect on another species of mite (Neoseiulus californicus) that naturally preys on the spider mite.

A spider mite normally hatches by cutting the eggshell, or "chorion," with its appendages as it rotates in the egg. The rotation in turn helps it cut more of the chorion and eases hatching. The spider mite embryo also uses silk threads surrounding the eggs, woven by its parent to house the eggs on the underside of leaves, which may act as leverage to aid this rotation.

To understand how Suffoil works against spider mites, the researchers dipped spider mite eggs in Suffoil and examined them using powerful microscopes. They also used spider mite eggs dipped in water as a control group.

They found that Suffoil partly covered the surface of spider mite eggs and the surrounding silk threads. More importantly, they observed that the embryonic rotational movement essential for hatching was absent or stopped in the Suffoil-covered eggs. It appears that the oil seeps into the eggs through the cut chorion, making the inside too slick for the embryo to rotate, thus preventing the embryo from hatching properly.

"The bio-pesticide works by preventing the spider mite embryo from rotating within its eggshell for hatching," said Takeshi Suzuki, a bio-engineer at Tokyo University of Agriculture and Technology (TUAT) and senior author of the study.

"It may also weaken the toughness of silk threads and reduce the anchoring effect of the egg on the substrate," said Suzuki.

The findings also offer an explanation as to why Suffoil has no effect on the spider mites' natural predators - they don't use rotation to hatch out of their eggs. This means that Suffoil may be used in conjunction with the spider mites' natural predators.

###

Other contributors include Naoki Takeda, Ayumi Takata, Yuka Arai, Kazuhiro Sasaya, Shimpei Noyama and Noureldin Abuelfadl Ghazy, all affiliated with TUAT, Shigekazu Wakisaka at OAT Agrio Co., Ltd., and Dagmar Voigt at Technische Universität Dresden.

This work was supported by JSPS KAKENHI, Grant/Award Number: 18H02203; JSPS Invitational Fellowships for Research in Japan, Grant/Award Number: L19542; Equal Opportunities Support of the School of Science at the Technische Universität of Dresden, Germany

For more information about the Suzuki laboratory, please visit http://web.tuat.ac.jp/~tszk/

Original publication:

Naoki Takeda Ayumi Takata Yuka Arai Kazuhiro Sasaya Shimpei Noyama Shigekazu Wakisaka Noureldin Abuelfadl Ghazy Dagmar Voigt Takeshi Suzuki. A vegetable oil-based biopesticide with ovicidal activity against the two-spotted spider mite, Tetranychus urticae Koch. Eng Life Sci. 2020;20:525-534. https://doi.org/10.1002/elsc.202000042

About Tokyo University of Agriculture and Technology (TUAT):

TUAT is a distinguished university in Japan dedicated to science and technology. TUAT focuses on agriculture and engineering that form the foundation of industry, and promotes education and research fields that incorporate them. Boasting a history of over 140 years since our founding in 1874, TUAT continues to boldly take on new challenges and steadily promote fields. With high ethics, TUAT fulfills social responsibility in the capacity of transmitting science and technology information towards the construction of a sustainable society where both human beings and nature can thrive in a symbiotic relationship. For more information, please visit http://www.tuat.ac.jp/en/.

Contact:

Takeshi Suzuki, PhD
Associate Professor
Graduate School of Bio-Applications and Systems Engineering
Tokyo University of Agriculture and Technology (TUAT), Japan
tszk@cc.tuat.ac.jp

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.