News Release

Chemical changes to peptide siRNA-carrier enhance gene silencing for future cancer drugs

MUSC Hollings Cancer Center researchers improve peptide siRNA drug carriers for use as a novel cancer treatment

Peer-Reviewed Publication

Medical University of South Carolina

Andrew Jakymiw

image: Dr. Andrew Jakymiw and his team found a peptide carrier with heightened potential to deliver a cancer therapeutic for oral cancer. view more 

Credit: MUSC/Marquel Coaxum

MUSC Hollings Cancer Center researchers are exploring the use of peptide carriers for the delivery of small RNA drugs as a novel treatment for cancer. The team's recent work, published online March 19 in the Molecular Therapy - Nucleic Acids journal, lays the foundation for developing a clinically relevant peptide carrier RNAi-based drug treatment strategy for human oral cancer.

According to the American Cancer Society, the estimated risk of developing oral cancer in the U.S. is 1 in 60 for men and 1 in 140 for women. Cancer therapies face multiple challenges, including off-target side effects and low efficacy. RNAi-based therapeutics have great potential to overcome these specific treatment challenges.

Andrew Jakymiw, Ph.D., who is also an associate professor in the Oral Health Sciences Department at MUSC, focuses on the study of RNA interference (RNAi)-based therapies for oral cancer. RNAi is a method of gene silencing that specifically targets, or tags, messenger RNA (mRNA) for degradation. mRNA contains the genetic code needed to make proteins. Small interfering RNA (siRNA) are the pieces of RNA that can bind to specific regions on mRNA that stop proteins from being made. Scientists are figuring out how to use this to target and silence disease-causing genes. Decades of research have shown that certain proteins are overexpressed in cancer and drive cancer cell growth. The goal of the RNAi drug treatment strategy is to "turn off" the proteins that promote cancer development.

Jakymiw said that although the principle is biologically sound, there are many technical challenges with siRNA delivery. "For example, rapid renal excretion, degradation by RNases, low intracellular uptake, endosomal entrapment and low release of the siRNA cargo from the delivery platform are all challenges that we must consider when modifying a peptide siRNA carrier," he said.

To harness the gene silencing capabilities of siRNA, scientists must get the siRNA into the appropriate cells. The siRNA must be attached to a larger molecule to protect it during delivery to the desired location. Peptide carriers are an attractive tool for delivering siRNA, because they are affordable and easy to modify.

In earlier studies, the Jakymiw laboratory found that the original peptide carrier they designed, called 599, could deliver the siRNA cargo into cancer cells and turn off a targeted cancer gene, which inhibited tumor growth in a mouse cancer model.

"We originally designed the 599 peptide so that it could help the siRNA cargo penetrate the cell and escape endosomes more easily. However, by looking at the three-dimensional arrangement of the amino acids in the 599 peptide, in particular their stereochemistry, we were able to make additional changes that beneficially affected the peptide carrier's capabilities," said Jakymiw.

Charles Holjencin, a dual D.M.D./Ph.D. student in the Jakymiw lab, used confocal fluorescence microscopy and observed that one of the modified 599 siRNA-loaded peptide carriers, called RD3AD, was arranged around the cancer cells in a clear pattern that he had not seen with the original 599 peptide carrier.

"Charles' keen observations through confocal work allowed us to identify an important intracellular delivery mechanism," said Jakymiw.

The modified RD3AD peptide carrier was delivering the siRNA drug by adhering to and potentially moving along cell surface protrusions, called filopodia. Entry into the cell via filopodia is a very efficient way for small biological complexes to enter cells; some viruses and bacteria also use this entry method. Since the siRNA-loaded RD3AD peptide carrier was able to enter cancer cells more efficiently, the research team saw improved gene silencing. This meant that the peptide carrier had heightened potential to deliver a cancer therapeutic, Jakymiw explained.

One of the next steps will be to test the RD3AD peptide in animal cancer models. Additionally, the researchers want to understand the mechanisms associated with this form of drug delivery more fully. For example, an unanswered question is what protein is the peptide carrier interacting with on filopodia? If this molecule is overexpressed in cancer, then this could be a valuable therapeutic target, especially for aggressive cancers, which typically have increased numbers of filopodia.

While cancer cells were the biological target for improving this drug delivery system, peptide carriers, such as RD3AD, have more applications than just in cancer therapies. In fact, peptides such as RD3AD could be used to deliver siRNA in any instance where gene silencing is desired for the treatment of a disease.

Now that the Jakymiw lab understands how to harness the specific amino acid stereochemical modifications in their peptide designs, the carrier's abilities are not limited to just siRNA. Other nucleic acid cargoes can be delivered by these peptide carriers, which opens future options for more targeted delivery of other forms of therapeutic molecules to treat challenging diseases.

"I look forward to collaborating with members of the Hollings Cancer Center in future studies related to how filopodia can be exploited for the enhancement of drug delivery, especially in the treatment of aggressive cancers," said Jakymiw.

###

Funding: NIH/NIDCR grants R21DE027231 and T32DE017551; Cell & Molecular Imaging Shared Resource, Hollings Cancer Center, MUSC (NCI P30CA138313); Bioengineering Center for Regeneration & Formation of Tissues, Clemson University (NIGMS P30GM131959); MUSC Summer Health Professions Research Program - College of Dental Medicine; MUSC Summer Undergraduate Research Program -College of Graduate Studies; U.S. Government Federal Work-Study Program.

About MUSC

Founded in 1824 in Charleston, MUSC is the oldest medical school in the South as well as the state's only integrated academic health sciences center with a unique charge to serve the state through education, research and patient care. Each year, MUSC educates and trains more than 3,000 students and nearly 800 residents in six colleges: Dental Medicine, Graduate Studies, Health Professions, Medicine, Nursing and Pharmacy. The state's leader in obtaining biomedical research funds, in fiscal year 2019, MUSC set a new high, bringing in more than $284 million. For information on academic programs, visit musc.edu.

As the clinical health system of the Medical University of South Carolina, MUSC Health is dedicated to delivering the highest quality patient care available while training generations of competent, compassionate health care providers to serve the people of South Carolina and beyond. Comprising some 1,600 beds, more than 100 outreach sites, the MUSC College of Medicine, the physicians' practice plan and nearly 275 telehealth locations, MUSC Health owns and operates eight hospitals situated in Charleston, Chester, Florence, Lancaster and Marion counties. In 2020, for the sixth consecutive year, U.S. News & World Report named MUSC Health the No. 1 hospital in South Carolina. To learn more about clinical patient services, visit muschealth.org.

MUSC and its affiliates have collective annual budgets of $3.2 billion. The more than 17,000 MUSC team members include world-class faculty, physicians, specialty providers and scientists who deliver groundbreaking education, research, technology and patient care

About MUSC Hollings Cancer Center

MUSC Hollings Cancer Center is a National Cancer Institute-designated cancer center and the largest academic-based cancer research program in South Carolina. The cancer center comprises more than 100 faculty cancer scientists and 20 academic departments. It has an annual research funding portfolio of more than $44 million and a dedication to reducing the cancer burden in South Carolina. Hollings offers state-of-the-art diagnostic capabilities, therapies and surgical techniques within multidisciplinary clinics that include surgeons, medical oncologists, radiation therapists, radiologists, pathologists, psychologists and other specialists equipped for the full range of cancer care, including more than 200 clinical trials. For more information, visit hollingscancercenter.musc.edu.


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.