News Release 

G-quadruplex-forming DNA molecules enhance enzymatic activity of myoglobin

Tokyo University of Agriculture and Technology

Research News

A collaboration led by Distinguished Professor Dr. Kazunori Ikebukuro from Tokyo University of Agriculture and Technology (TUAT), Japan, discovered that G-quadruplex (G4)-forming DNA binds myoglobin through a parallel-type G4 structure. Through the G4 binding, the enzymatic activity of myoglobin increases over 300-fold compared to that of myoglobin alone (Figure). This finding indicates that DNA may work as a carrier of genetic information in living organisms and act as a regulator of unknown biological phenomena.

"Aptamers" are nucleic acid-based synthetic ligands that can be used against many target molecules with high affinity and specificity. Some aptamers that bind to proteins are reported as specific ligands and biological function regulators. Dr. Ikebukuro and his group have developed many DNA aptamers that bind proteins, especially enzymes. In addition, they developed the aptameric enzyme modulator--aptameric enzyme subunit (AES), which can inhibit enzymatic activities. The current challenge for the group is to create novel aptamers that upregulate the catalytic activity of enzymes.

The collaborative team of TUAT, RIKEN (Japan), DENSO CORPORATION (Japan), and the University of North Carolina, Chapel Hill (USA) succeeded in developing a new AES that increases the peroxidase activity of myoglobin. As myoglobin contains a heme as a cofactor, the research team found that a region near the heme-binding site can be positively charged. "We hypothesized that this region is likely to interact with negative charges of the DNA oligonucleotides derived from its sugar-phosphate backbone, which may lead to an enhancing effect on the enzymatic activity," said Dr. Ikebukuro.

The chemiluminescence measurements in their study showed that the AES specifically enhanced the peroxidase activity of myoglobin by up to 300-fold compared to that of myoglobin alone (Figure). Further, the AES bound to myoglobin strongly at the heme in myoglobin, as expected (Figure). The structural analyses by NMR and spectroscopic observation revealed the AES folded into a parallel-type G-quadruplex structure.

"Our study has revealed that DNA can potentially work as a regulator of protein's functions in the cell. On the other hand, because the AES produces a dramatically enhanced chemiluminescent signal, it could also offer a new strategy for future biosensor application studies," Dr. Ikebukuro added.

###

For more information about the Ikebukuro Tsugawa Asano laboratory, please visit http://web.tuat.ac.jp/~tanpaku/index_E.html

Original publication: G-quadruplex-forming aptamer enhances the peroxidase activity of myoglobin against luminol
Nucleic Acid Research, gkab388
URL https://doi.org/10.1093/nar/gkab388

Kaori Tsukakoshi1,†, Yasuko Yamagishi1,†, Mana Kanazashi2, Kenta Nakama1, Daiki Oshikawa1, Nasa Savory1, Akimasa Matsugami3, Fumiaki Hayashi3, Jinhee Lee4, Taiki Saito1, Koji Sode4, Kanjana Khunathai2, Hitoshi Kuno2, Kazunori Ikebukuro1, *

1 Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei, Tokyo, 184-8588, Japan
2 DENSO CORPORATION, 1-1 Showa-cho, Kariya, Aichi, 448-8661, Japan
3 Advanced NMR Application and Platform Team, NMR Research and Collaboration Group, NMR Science and Development Division, RIKEN SPring-8 Center, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa 230-0045, Japan
4 Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC 27599, USA

†: The authors equally contributed to this work
*: Corresponding author

About Tokyo University of Agriculture and Technology (TUAT):

TUAT is a distinguished university in Japan dedicated to science and technology. TUAT focuses on agriculture and engineering that form the foundation of industry, and promotes education and research fields that incorporate them. Boasting a history of over 140 years since our founding in 1874, TUAT continues to boldly take on new challenges and steadily promote fields. With high ethics, TUAT fulfills social responsibility in the capacity of transmitting science and technology information towards the construction of a sustainable society where both human beings and nature can thrive in a symbiotic relationship. For more information, please visit http://www.tuat.ac.jp/en/.

Contact: Kazunori Ikebukuro, Ph.D.
Professor
Department of Biotechnology and Life Science,
Tokyo University of Agriculture and Technology, Japan

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.