News Release

NYUAD researchers discover expanding and intensifying low-oxygen zone in the Arabian gulf

Researchers have studied the emergence of hypoxia - low oxygen levels - in the Gulf over three decades, a stressor on the health of marine life in the region and the larger ecosystem

Peer-Reviewed Publication

New York University

Hammour

image: Hammour in Arabian Gulf view more 

Credit: Courtesy John Burt, NYU Abu Dhabi

A team of researchers from the Arabian Center for Climate and Environmental Sciences (ACCESS) at NYU Abu Dhabi (NYUAD) studied the evolution of dissolved oxygen in the Arabian Gulf over three decades and discovered a significant decline in oxygen concentrations and the expansion of the seasonal near-bottom hypoxic zone (lower oxygen levels near the bottom of the Gulf in certain seasons). The researchers conclude that changes in local climate are altering the Gulf’s physical and biogeochemical environment with potential implications for the ecosystems and the fisheries of the region.

In the paper titled Recent expansion and intensification of hypoxia in the Arabian Gulf and its drivers published in the journal Frontiers in Marine Science, the researchers used a sophisticated ocean model to simulate hypoxia near the sea bottom, from 1982 to 2010. The results indicated an expansion and intensification of hypoxia in the central Gulf, accompanied by a lengthening of the hypoxic season.

Because of the scarcity of observations of the area, the dynamics of hypoxia in the Gulf remain largely unknown. This is the first study to model the biogeochemistry of the Gulf. This is also the first time that researchers have explored the drivers of large-scale hypoxia in the Gulf and its seasonal and long-term variability.

The expansion and intensification of hypoxia in the Gulf has the potential to alter its biogeochemistry and marine ecosystems in various ways. Hypoxia can cause fish mortality, lead to a loss of marine biodiversity, and may also cause distribution shifts as fish migrate to avoid hypoxic stress. This can alter the community structure of reef ecosystems and increase the vulnerability of the Gulf coral reefs to ongoing warming and climate change.

“Oxygen is an essential molecule, vital for the survival of the marine organisms and fish populations in the area. Our team found that the seasonal hypoxic zone in the Arabian Gulf has grown by over 50 percent since the 1980s, and it is now persisting for several more months each year compared with several decades ago,” said lead author Zouhair Lachkar, a senior research scientist at ACCESS.

Associate Professor of Biology at NYUAD and co-author of the report John Burt added: “The expansion and intensification of these low-oxygen waters in the central Gulf represents a growing threat to regional fisheries, with this hypoxic zone growing steadily towards the UAE’s offshore fishing grounds. We will continue to study the evolution of this phenomenon and will work with the relevant government agencies to assess this risk going forward as climate change continues to put pressure on our marine systems.”

Ends

About NYU Abu Dhabi 

nyuad.nyu.edu/en/

NYU Abu Dhabi is the first comprehensive liberal arts and research campus in the Middle East to be operated abroad by a major American research university. NYU Abu Dhabi has integrated a highly selective program with majors in the sciences, engineering, social sciences, arts, and humanities with a world center for advanced research. Its campus  enables students to succeed in an increasingly interdependent world, and to advance cooperation and progress on humanity’s shared challenges. NYU Abu Dhabi’s high-achieving students have come from some 120 countries and speak over 115 languages. Together, NYU's campuses in New York, Abu Dhabi, and Shanghai form the backbone of a unique global university, giving faculty and students opportunities to experience varied learning environments and immersion in other cultures at one or more of the numerous study-abroad sites NYU maintains on six continents. 


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.