Extrait d’une simulation numérique de fusion des deux trous noirs. (IMAGE)
Caption
Un couple de trous noirs en orbite l’un autour de l’autre perd de l’énergie sous forme d’ondes gravitationnelles. Les deux astres se rapprochent lentement, un phénomène qui peut durer des milliards d’années avant de s’accélérer brusquement. En une fraction de seconde, les deux trous noirs entrent alors en collision à une vitesse de l’ordre de la moitié de celle de la lumière et fusionnent en un trou noir unique. Celui-ci est plus léger que la somme des deux trous noirs initiaux car une partie de leur masse (ici, l’équivalent de 8 soleils, soit une énergie colossale) a été convertie en ondes gravitationnelles selon la célèbre formule d’Einstein E=mc2. C’est cette bouffée d’ondes gravitationnelles que les deux détecteurs Ligo (aux Etats-Unis) et le détecteur Virgo (en Italie) ont observée. Sur son passage, cette onde dilate puis contracte l'espace. Ainsi, tout objet qui se trouve sur le trajet d'une onde gravitationnelle voit sa longueur varier : ce sont ces infimes variations qui sont repérées dans les détecteurs Ligo et Virgo. © N. Fischer, H. Pfeiffer, A. Buonanno (Max Planck Institute for Gravitational Physics), Simulating eXtreme Spacetimes (SXS) Collaboration
Credit
N. Fischer, H. Pfeiffer, A. Buonanno (Max Planck Institute for Gravitational Physics), Simulating eXtreme Spacetimes (SXS) Collaboration
Usage Restrictions
May only be used with appropriate credit and caption, to report on this finding.
License
Licensed content