Figure 2. (IMAGE)
Caption
Water-induced short circuits are caused by dendritic growth from the cathode. When an electrical circuit gets wet, copper ions dissolve from the anode and migrate to the cathode. The copper ions are then reduced at the cathode and precipitate in a dendritic form. However, with a protective cellulose nanofiber (CNF) coating, the applied electric field and water promote dispersion and migration of the CNFs toward the anode, and a protective hydrogel layer forms around the anode. The hydrogel layer can trap the Cu ions; therefore, interelectrode short circuits are prevented for at least 24 h.
Credit
Osaka University
Usage Restrictions
None
License
Licensed content