News Release

Enlightening insects: Morpho butterfly nanostructure inspires technology for bright, balanced lighting

Researchers at Osaka University use randomly arranged self-cleaning nanopatterns to realize a new-type optical diffuser based on diffraction, which might be useful in visual displays and energy-saving windows

Peer-Reviewed Publication

Osaka University

Figure

image: 

Design and diffused light for the anisotropic (left) and isotropic (right) Morpho-type diffusers. It has high optical functionalities and anti-fouling properties, which until now have not been realized in one device.

view more 

Credit: K.Yamashita, A.Saito

Osaka, Japan – As you watch Morpho butterflies wobble in flight, shimmering in vivid blue color, you’re witnessing an uncommon form of structural color that researchers are only beginning to use in lighting technologies such as optical diffusers. Furthermore, imparting a self-cleaning capability to such diffusers would minimize soiling and staining and maximize practical utility.

Now, in a study recently published in Advanced Optical Materials, researchers at Osaka University have developed a water-repelling nanostructured light diffuser that surpasses the functionality of other common diffusers. This work might help solve common lighting dilemmas in modern technologies.

Standard lighting can eventually become tiring because it’s unevenly illuminating. Thus, many display technologies use optical diffusers to make the light output more uniform. However, conventional optical diffusers reduce the light output, don’t work well for all emitted colors, or require special effort to clean. Morpho butterflies are an inspiration for improved optical diffusers. Their randomly arranged multilayer architecture enables structural color: in this case, selective reflection of blue light over a ≥±40° angle from the direction of illumination. The goal of the present work is to use this inspiration from nature to design a simplified optical diffuser that has both high transmittance and wide angular spread, works for a range of colors without dispersion, cleans by a simple water rinse, and can be shaped with standard nanofabrication tools.

“We create two-dimensional nanopatterns—in common transparent polydimethylsiloxane elastomer—of binary height yet random width, and the two surfaces have different structural scales,” explains Kazuma Yamashita, lead author of the study. “Thus, we report an effective optical diffuser for short- and long-wavelength light.”

The researchers tailored the patterns of the diffuser surfaces to optimize the performance for blue and red light, and their self-cleaning properties. The experimentally measured light transmittance was >93% over the entire visible light spectrum, and the light diffusion was substantial and could be controlled into anisotropic shape: 78° in the x-direction and 16° in the y-direction (similar to values calculated by simulations). Furthermore, the surfaces both strongly repelled water in contact angle and self-cleaning experiments.

“Applying protective cover glass layers on either side of the optical diffuser largely maintains the optical properties, yet protects against scratching,” says Akira Saito, senior author. “The glass minimizes the need for careful handling, and indicates our technology’s utility to daylight-harvesting windows.”

This work emphasizes that studying the natural world can provide insights for improved everyday devices; in this case, lighting technologies for visual displays. The fact that the diffuser consists of a cheap material that essentially cleans itself and can be easily shaped with common tools might inspire other researchers to apply the results of this work to electronics and many other fields.

###

The article, “Development of a high-performance, anti-fouling optical diffuser inspired by Morpho butterfly's nanostructure,” was published in Advanced Optical Materials at DOI: https://doi.org/10.1002/adom.202301086

About Osaka University

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and is now one of Japan's leading comprehensive universities with a broad disciplinary spectrum. This strength is coupled with a singular drive for innovation that extends throughout the scientific process, from fundamental research to the creation of applied technology with positive economic impacts. Its commitment to innovation has been recognized in Japan and around the world, being named Japan's most innovative university in 2015 (Reuters 2015 Top 100) and one of the most innovative institutions in the world in 2017 (Innovative Universities and the Nature Index Innovation 2017). Now, Osaka University is leveraging its role as a Designated National University Corporation selected by the Ministry of Education, Culture, Sports, Science and Technology to contribute to innovation for human welfare, sustainable development of society, and social transformation.

Website: https://resou.osaka-u.ac.jp/e


Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.