News Release

Isolation and characterization of amylase enzyme produced by indigenous bacteria from sugar factory waste

This article by Dr. Eli Hendrik Sanjaya and colleagues is published in the journal, The Open Biotechnology Journal

Peer-Reviewed Publication

Bentham Science Publishers

Amylases are important enzymes that break down complex carbohydrates to simple sugar molecules. They are important for digesting food and allowing the body mobilize carbohydrates for metabolism. Amylases are also commonly used commonly used as biocatalysts in many industries including food processing, detergents and pharmaceutical preparations. Indonesia is a net importer of amylases which has implications for the cost of relevant industrial processes and new product development. To reduce production costs, it is important to produce amylase locally using native microorganisms.

That is exactly what a team of chemists and biotechnologists at Universitas Negeri Malang, led by Eli Hendrik Sanjaya set out to do. An expert in wastewater processing and treatment, Dr. Sanjaya’s group attempted to isolate amylase-producing bacteria from the liquid waste of sugar local factories and optimize the production of the amylase enzyme.

The research team achieved this through seven stages: preparing samples, isolating amylase-producing bacteria, producing crude amylase extract, testing amylase activity, optimizing amylase production, determining the specific activity, and identifying the bacteria through genotyping.

The researchers successfully identified three bacterial isolates (G-7, G-8, and G-12) that produce amylase enzymes from sugar factory waste. They noted that the optimal conditions for amylase production were 37°C, at pH 7.0, during the exponential growth phase. Isolate G-8 produced the enzyme most efficiently at 24 hours with a specific activity of 0.198 U/mg. Isolates G-7 and G-12 reached their peak production at 48 hours, with specific activities of 0.108 U/mg and 0.208 U/mg, respectively.

16S rRNA gene analysis identified the three local strains as Bacillus infantis, Bacillus flexus, and Pseudomonas nitroreducens, respectively.

“All three species have shown great potential for amylase enzymes production,” notes Dr. Sanjaya. This is the impetus the local industry might need to drive industrial processes towards sustainability. “We can hopefully reduce amylase imports in Indonesia. To meet industrial demand, amylase enzyme activity can be increased by purifying the enzyme amylase from crude extract.”

Read this article in The Open Biotechnology Journal here;

For publishing scholarly article in Bentham journals, please visit:

Disclaimer: AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert system.